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Abstract. A brief survey of the results obtained by the authors in the development and investigation
of the algorithms of numerical simulation of the motion of solar system small bodies is given. New
approaches to the construction of the algorithms of high-accuracy numerical simulation of the dy-
namics of small bodies and the methods of the determination of the domain of their possible motions
are presented.
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1. Introduction

Solar system small bodies such as asteroids, comets and satellites are character-
ized by a wide variety of orbits and complex structure of perturbations. For this
reason numerical simulation of the motion of these objects is connected with some
difficulties. In the paper we present a set of new approaches allowing a way over
them.

We shall consider the algorithms meant for high-accuracy long-term numerical
simulation of the motion of the small bodies and the algorithms of the determina-
tion of the domains of their possible motions.

Continuing our earlier researches (Bordovitsyna, 1984; Bordovitsyna and Shar-
kovsky, 1994) for the application of regularizing and stabilizing transformations
in the algorithms of high-accuracy numerical simulation of the celestial bodies
motion we have constructed new Encke-type algorithms in Kustaanheimo–Stiefel
(KS) variables (Stiefel and Scheifele, 1971). These algorithms and the analysis of
the results of their numerical realization are presented in Section 2.

The problem of numerical simulation of close encounters of small bodies with
large planets is discussed in Section 3. New approaches for the determination of
the domains of possible motions of small bodies are given in Section 4.
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2. Algorithms of High-accuracy Numerical Simulation

2.1. EQUATIONS OF MOTION AND THEIR PECULIARITIES

The motion of a material particle with the mass m in the gravitational field of the
central body with the mass M under the action of perturbed forces can be written
as

d2x

dt2
+ µx

r3
= −∂V

∂x
+ F, (1)

with initial conditions

x0 = x(t0), ẋ0 = ẋ(t0). (2)

Here x = (x1, x2, x3)
T is the position vector, t is physical time, r = |x|, µ= k2(M+

m), moreover m is infinitely small by comparison with M, k2 is the universal
gravitational constant, V =V (x, t) is a perturbed function of potential forces and
F is the vector of the accelerations due to the forces which have no potential.

As it is well known, Equations (1) are singular in the vicinity of the cent-
ral mass. For orbits having large eccentricities the presence of the singularity at
the origin of the coordinate frame causes strong and nonuniform changes of the
right-side functions of the motion equations. The same thing takes place when the
small bodies approach some planets. In the process of numerical integration these
nonuniformities require a regular change of integrating step size. It involves losses
in accuracy of numerical solution and wasteful expenditure of computer time.

Besides, the solutions of Equations (1) are unstable in the Lyapunov sense even
in the case of Keplerian motion. And this instability intensifies the influence of
errors generated in the numerical process.

There are different ways of eliminating the losses in the efficiency of numerical
integrating the equations of the motion of Solar system small bodies. These are
the use of a computer word of large length and high order numerical methods as
well as the transformations allowing completely or partly to avoid the singularity
mentioned above.

2.2. USING REGULARIZING AND STABILIZING TRANSFORMATIONS

Kustaanheimo–Stiefel transformations (Stiefel and Scheifele, 1971):

x = L(u)u and 2ωdt = rdE,

reduce the motion Equation (1) to the perturbed harmonic oscillator

d2u

dE2
+ 1

4
u = r

8ω2
LT (u)

(
−∂V

∂x
+ F

)
− V u

8ω2
− 1

ω

dω

dE

du

dE
, (3)
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and the time equation

dt

dE
= r

2ω
, (4)

where the frequency ω is given by the equation

dω

dE
= − r

8ω2

(
∂V

∂t
+ (ẋ, F )

)
. (5)

Here u is the 4-dimensional vector in KS-space, L(u) is the well-known KS-matrix

L(u) =




u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1


 ,

and E is the so-called generalized eccentric anomaly as a new independent vari-
able.

Equations (3)–(5) and their solutions are completely regular in the vicinity of
the central body.

When perturbations are absent the solution of (3)–(5) has the form

u = α cos
E

2
+ β sin

E

2
, ω = ω0 = const,

t = τ − 1

ω

(
u,

du

dE

)
, (6)

where α, β are regular elements, 4-dimensional vector constants, and the time
element τ is a linear function of E.

Corresponding to (3)–(5) and (6) the equations of perturbed motion in the ele-
ments q = (α, β, ω)T and τ can be written as

dq

dE
= R

(
E

2

)
Q, (7)

dτ

dE
= 1

8ω3

[
µ − 2rV + r

(
x, F − ∂V

∂x

)]
− 2

ω2

dω

dE

(
u,

du

dE

)
, (8)

where

R(ϕ) =

 cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1


 , (9)

Q= (Q1,Q2,Q3)
T is the vectorial perturbing function whose components Q1, Q2

in turn are the 4-dimensional vectors but Q3 is the scalar:

Q1 = 0, Q2 = r

4ω2
LT (u)

(
−∂V

∂x
+ F

)
− Vu

4ω2
− 2

ω

dω

dE

du

dE
, (10)
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Q3 = − r

8ω2

(
∂V

∂t
+ (ẋ, F )

)
. (11)

The introduction of the time element τ , which varies almost linearly in weak per-
turbed motion, allows us to slacken the sensitivity of the equation of a quick secular
variable for large values of the eccentricity. Thus the whole system of equations is
completely insensitive to large values of the orbital eccentricity.

KS-theory in combination with high-order numerical methods is a powerful
means for solving a lot of problems in celestial mechanics. Two examples be-
low demonstrate some advantages of the stabilizing and regularizing transform-
ations as applied to the problems of numerical simulation of asteroid and satellite
motion.

In Figure 1 and 2 for the example of simulating the motion of the asteroid
Phaethon the characteristics of accuracy and speed of the Everhart integrator
(Everhart, 1974) are given when using the rectangular coordinates x and the KS-
variables u. The plots in the figures show that the efficiency of the KS-algorithm is
essentially higher than that of the classical algorithm. The high accuracy of the KS-
algorithm can be achieved in weak conditions of the integrator and at the price of
negligible losses in computer time. In principle the same accuracy can be achieved
in numerical integration of the classical equations. However, it is repaid with low
speed of calculations. Moreover, it should be noted, the efficiency region for the
classical algorithm is significantly narrower.

In Figure 3 and 4 the same characteristics are given for the satellite of Jupiter,
Metis. Judging from the plots the efficiency of KS-algorithm is also higher.
We gave these examples to emphasize once more that the application of regu-
larizing and stabilizing transformations to constructing high-efficient algorithms
for simulating the motion of solar system small bodies deserves special
attention.

Figure 1. The order of the error �r obtained by the forward-and-backward integration method for
different conditions of integration. Asteroid Phaethon, 1000 rev.
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Figure 2. The speed in numbers of calling the subroutine of the perturbation function NCF for
different conditions of integration. Asteroid Phaethon, 1000 rev.

Figure 3. The order of the error �r obtained by the forward-and-backward integration method for
different conditions of integration. Satellite Metis, 1000 rev.

2.3. ENCKE-TYPE ALGORITHMS IN KS-VARIABLES

An essential defect in the mentioned KS-systems is that they contain the differential
equations of quick variables, moreover some of them such as t and τ increase
unboundedly. As is well known, the equations of quick variables are characterized
by large values and complex variations of the right-side members. Therefore their
numerical integration runs by small steps and with low accuracy.

The Encke method (Encke, 1852) allows this problem to be solved. It reduces
the right-side members of the differential equations by using the deflections (per-
turbations) of real coordinates from an intermediate orbit as new integrated vari-
ables.
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Figure 4. The speed in numbers of calling the subroutine of the perturbation function NCF for
different conditions of integration. Satellite Metis, 1000 rev.

2.3.1. Classical approach
Let us take the Keplerian orbit in KS-space as an intermediate one. In accordance
with (3), (5) and (8) it is described by the equations

d2uK

dE2
+ 1

4
uK = 0,

dωK

dE
= 0,

dτK

dE
= µ

8ω3
K

,

which have the simple analytical solutions

uK = αK cos
E

2
+ βK sin

E

2
, αK = α0, βK = β0,

τK = µ

8ω3
K

E + τ0, ωK = ω0. (12)

Here and below the indexes K and 0 denote Keplerian and initial variables respect-
ively.

Then the Encke equations in the KS-interpretation turn into the form (Bordovit-
syna et al., 1998a)

d2δu

dE2
+ 1

4
δu = r

8ω2
LT (u)

(
−∂V

∂x
+ F

)
− V u

8ω2
− 1

ω

dω

dE

du

dE
, (13)

dδτ

dE
= 1

8ω3

[
µ

(
1 − ω3

ω3
K

)
− 2rV + r

(
x, F − ∂V

∂x

)]
−

− 2

ω2

dω

dE

(
u,

du

dE

)
, (14)

dδω

dE
= − r

8ω2

(
∂V

∂t
+ (ẋ, F )

)
, (15)

δu = u − uK, δτ = τ − τK, δω = ω − ωK.
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2.3.2. A modified Encke-method
An original approach to realize the Encke method was offered by Sharkovsky
(1990). It is based on the use of Keplerian eccentric anomaly EK as an independent
variable and of some properties of the rotation matrices R (9).

Sharkovsky showed the elegance of his method in equations of the form

dq

dE
= R

(
E

2

)
Q,

dt

dE
= r

2ω
.

The transition to the new independent variable is realized by means of the
transformation

dE = (1 + ε)dEK, ε = rKω

ωKr
− 1. (16)

Then the equations of motion can be written as

dq∗

dEK
+ 1

2
εIq∗ = (1 + ε)R

(
EK

2

)
Q, (17)

dt

dEK
= rK

2ωK
, (18)

where

q∗ = RT

(
δE

2

)
q, I =


 0 −1 0

1 0 0
0 0 0


 ,

and δE =E − EK is the correction due to perturbations in the eccentric anomaly.
The time Equation (18) has an analytical solution which, as a matter of fact,

constitutes the generalized Keplerian equation

t − t0 = µ

8ω3
K

(EK − sinEK) + r0

[
sinEK

2ωK
+ ṙ0

1 − cosEK

4ω2
K

]
. (19)

Therefore the time equation can be replaced by (19) and thus, struck off the system
solved numerically.

It is clear that in the case of small perturbations the application of the obtained
system (17) is advantageous when ε is close to zero. However the growth and
appreciable periodic oscillations of the value ε due to the influence of perturbations
cause strong variations of the right-side functions of the equations and, in turn,
result in the enlargement of numerical errors.

A few words should be mentioned on the problem of subtracting two almost
equal terms in Equations (14) and (17) (Encke terms):

1 − ω3

ω3
K

, ε = rωK

rKω
− 1.
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The direct subtractions in Encke terms cause low accuracy of their calculation.
However one can avoid this difficulty by employing the Encke transformation. It
reduces the subtractions to the expressions

1 − ω3

ω3
K

= − δω

ωK

[(
ω

ωK

)2

+
(

ω

ωK

)
+ 1

]
,

rωK

rKω
− 1 = δr

rK

ωK

ω
− δω

ω
,

where

δr = (uK + u, δu), rK = (uK, uK).

2.3.3. New intermediate orbits
Traditionally in the Encke method the orbit of the two-body problem is used as an
intermediate one. There were attempts to improve the Encke method by using the
intermediate orbits which include these or those forces affecting an investigated
object.

There are a number of the Encke-type algorithms based on so-called superoscu-
lating orbits (Batrakov and Makarova, 1979; Batrakov and Mirmakhmudov, 1991;
Shefer, 1998) where one uses the idea of the introduction of a fictitious gravitational
center offered by Shaikh (1966).

Sorokin (1991) had exploited the Encke method based on the problem of two
fixed gravitational centers. Borrowing Herrick’s idea about the additional mass,
(Herrick, 1972) Avdyuschev (1999) offers the KS-orbit taking partially into ac-
count the oblateness of a planet for approximating the quasi-circular equatorial
motion of a planet’s inner satellite.

The equation of Herrick’s orbit has the form

d2xJ

dt2
+ µ

(
1 + 3

2

J2b
2

r2
J

)
xJ

r3
J

= 0,

where J2 is the factor of the second zonal harmonic in the expansion of the planet-
ary potential and b is the equatorial radius of the planet. Here and below index J

is used to denote the variables relating to the new intermediate orbit.
In KS-space the same orbit is described by the equations

d2uJ

dE2
+ 1

4
(1 + 4!)uJ = 0,

dωJ

dE
= 0,

dτJ
dE

= µ

8ω3
J

(1 − !) , ! = (2ωJ )
4J2b

2

2µ2
.
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On the basis of the new intermediate orbit the Encke equations in KS-variables
have been realized numerically and their efficiency has been examined in dynam-
ical problems of some natural satellites.

2.4. ESTIMATION OF ALGORITHMIC EFFICIENCY

To estimate the efficiency of the algorithms, numerical experiment has been car-
ried out as applied to simulating the motion of special asteroids and outer sate-
llites.

The efficiency of an algorithm is understood as a feature defined by its accur-
acy and speed. The value of the maximum of the deflection �r =√

�x2 in the
positional vector obtained by the well-known forward-and-backward integration
method is taken as a measure of the algorithmic accuracy. An error in the position
vector appearing as a result of inexact integrating the time equation is calculated as
�rt =

√
ẋ2�t and is added to �r.

The number (NCF) of calling the subroutine of the right-side members of dif-
ferential equations is used as a measure of calculation speed. The results of the
experiment are given in Table I. Here L= lg�r (lg AU) is the order of accuracy
and NCF (105) is taken approximately. The analysis of the experimental results has
allowed us to divide all the considered algorithms into three classes depending on
efficiency.

Class I includes all the Encke-type algorithms. Class II consists of the algorithms
written in regularizing and stabilizing variables. And the algorithm in rectangular
coordinates is referred to as Class III.

The estimation of the efficiency of the algorithms in the problems of numerical
simulation of the motion of inner satellites has been obtained for the example of
three satellites: Phobos (I Mars), Amalthea (V Jupiter) and Mimas (I Saturn).

The orbits of all the objects are quasi-circular and quasi-equatorial. The motion
of every satellite is simulated over the interval from the discovery of the satellite till
the present time. The model of forces is limited by the influence from the gravita-
tional field of an oblate planet and the Sun. For taking into account the oblateness
of the central planet the factors J2 were chosen: 1.9582 · 10−3 for Mars at the mass

TABLE I

Efficiency classification of algorithms

Class LNCF

�t = 100 rev. �t = 1000 rev.

I KS-Encke (δu) −141 −1210

II KS (u) −131 −1110

III Classical (x) −132.5 −1125
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TABLE II

Estimation of numerical integration errors

Satellite !, 10−4 �T , rev. L(δuJ ) L(δuK) L(u) L(x)

J5 Amalthea 11 78900 −13 −11 −10 −3

S1 Mimas 9 81700 −13 −12 −11 −6

M1 Phobos 1 140400 −13 −13 −11 −6

L= lg �r (lg AU).

1/3098710, 1.4736 · 10−2 for Jupiter at the mass 1/1047.35 and 1.6298 · 10−2 for
Saturn at the mass 1/3498 while the mass of the Sun is 1.

The outcomes of the estimation given in the Table II demonstrate an advantage
of KS-algorithms over the classical ones for all the objects investigated. Only the
transition from x-space to u-space makes the integrating accuracy higher by 4–7
orders. The application of the equations in Encke form perfects the accuracy of
KS-algorithms by not less than 2 orders.

Taking into account the effect of the planetary oblateness in intermediate orbits
and decreasing perturbations in the Encke method in this way raise the integrat-
ing accuracy significantly, especially when the values of ! are large (Amalthea,
Mimas). It should be noted that the accuracy of the classical Encke method in KS-
variables goes down when ! increases. But the accuracy of the generalized one is
quite insensitive to the variation of !.

In addition to the comments above, attention should also be paid to the fact
that all these accuracy estimations are not absolute since they are obtained under
similar algorithmic speed. For example, the accuracy of the classical algorithms
could be raised by several orders but this accuracy would be achieved at the price
of a considerable increase in computations.

3. Algorithms for Numerical Simulation of Close Encounters of Small
Bodies with Planets

The problem of the numerical investigation of close encounters of small bodies
with large planets is very difficult. The point is that the equations describing the
dynamics during close encounters have singularities in the vicinities of planets.
The KS-transformations consider above eliminate only the one singularity in the
central body while the other ones remain. Therefore Stiefel–Scheifele KS-theory
does not solve the problem of close encounters.

The graph on Figure 5 demonstrates the efficiency in accuracy of the Encke
algorithm L(�τE) in KS-elements (δq, δτ ) by comparison with the original one
(�r) in the same elements (q, τ ) for numerical simulations of the motion of
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Figure 5. Advantage of Encke algorithm.

Figure 6. Relative perturbations.

asteroid Phaethon over time interval of 10 000 revolutions of the object. The part
of the curve in Figure 5 where the loss in accuracy takes place corresponds directly
to the part of the curve on Figure 6 where strong perturbations, caused by close
encounters with the Mars and the Earth, occur. Here p is the ratio of the total
perturbation value to the value of the central force.

The use of the double KS-transformation (Aarseth and Zare, 1974) is effective
only when a small body comes deep within the action sphere of a planet (Shefer,
1990).
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Figure 7. Estimation of the accuracy in positional vector when using different algorithms of the
prediction of motion. Asteroid 1991 VG.

The drastic means of solving the problem consist in the use of high-precision
computer word. What it gives is shown on Figure 7. Here the results of numer-
ical investigation the asteroid dynamics during close encounters by using a high-
precision computer word are presented. As an investigated object the asteroid 1991
VG is taken. Over the considered time interval it has had a lot of close encounters
with the Earth, one of them is 0.0031 a.u. in December, 21, 1991.

Together with the classical equations of motion (1) denoted below as (xt ) we
have used the equations (xs) (Bordovitsyna et al., 1998b) with the new independent
variable s connected with the time t by the differential relation

Udt = ds, where U =
∑

µi/�i,

in which µi is the gravitational parameter of massive body i including the Sun and
�i is its distance to the small body.

On Figure 7 the estimations of the accuracy in position vector for various pre-
cisions of computer word determined in decimal digits L for various orders N of
Gragg-Richardson numerical method (Hairer et al., 1987) and for two forms of
differential equations are given in Table III.

The estimations show that the loss of accuracy due to close encounters takes
place in all cases. However, the use of a large scale computer word and a numer-
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TABLE III

Parameters of simulation

Curve L N Equations

1 19 18 xt

2 19 18 xs

3 25 18 xt

4 25 18 xs

5 28 26 xs

ical high order method with the regularized differential equations (xs) allow us to
put errors to insignificant digits. At the same time the speed of the regularizing
algorithm is essentially higher than that of the classical algorithm.

4. Algorithms for Determination of Domain of Possible Motions

4.1. SETTING OF PROBLEM

The accuracy of numerical simulation of the motion of Solar system small bodies is
determined not only by the accuracy of numerical methods but also by the accuracy
of assigning the initial parameters of the simulation. The initial parameters of the
motion of real objects are defined by the well-known least squares method (LSM)
or other methods by the observations which have errors.

So, in constructing the numerical models of the motion of a real object, it may
be more rightful to assign its initial orbital elements in the form of a certain domain
of their possible values and to regard the dynamical evolution of the object as an
evolution of the domain. Lately that approach is getting more popular especially
as there exist problems (for instance, the problems of the identification of objects)
where this approach is, in general, the only possible one. We shall consider the
problem of numerical simulating motion in the following setting.

The equations of motion can be written in the form

q̇ = f (q,C), (20)

where q(t) is the m-dimensional vector of dynamical variables, any of the con-
sidered ones above in Section 2, C is the known vector of constants of the model.
The initial conditions q0 = q(t0) are in the domain of possible motions R0, that is
q0 ∈ R0.
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4.2. ALGORITHMS FOR DETERMINATION OF INITIAL DOMAINS OF POSSIBLE

MOTIONS

There exist several ways to build the initial domains of motions R0.
In the classical way, when it is expected that the law of distribution of errors of

observations is close to normal one, initial domains of possible motions are defined
by LSM-evaluations of the vector of initial parameters q̂0 and by the covariance
matrix of their errors D̂0,

R0 : N
(
q̂0, k

2D̂0

)
, k = 1, 2, 3, (21)

where k is the gain factor of LSM-evaluations of the covariance matrix of errors in
initial parameters. In the case, when the law of distribution of errors of observations
greatly differs from the normal one, one has to search other ways to assign initial
domains of object motions.

Chernitsov has suggested using in the correlation (21) the gain factor k > 3
and has made an attempt to determine the values experimentally of this factor for
different objects and different conditions of their observability.

Miunonen (1996) has suggested in bad-conditioned problems to use eigen-
vectors for the construction of an initial bunch of trajectories, choosing randomly
along with them the parameters of initial orbits within three sigmas. Under well
conditioned problems this way reduces to the classical one.

An original way of assigning the initial domains of possible motions was offered
by Milani et al. (2000)

R0 : �qT Cq�q � σ 2, σ > σ0
√
n − m. (22)

Here �q is the m-dimensional vector defined by q − q0 where q0 is the solution
best fitting the available observations, Cq is the normal matrix.

Under that assignment of the domain of initial values by its boundary is the
ellipsoid defined by the inequality (22). Milani et al. have offered an approximate
method of finding boundary points of the domain of possible motions.

Developing the idea of Milani et al. Chernitsov suggested an iterative algorithm
for determining the borders of the domain of initial values, having presented it in
the form of the ensembles of points which are a solution of the nonlinear equation
of the type

.(q0, σ ) = /(q0) − σ 2 = �lT (q0)P�l(q0) − σ 2 = 0. (23)

Here �l(q0) is a n-dimensional vector of residuals (O −C), P is a weight matrix,
σ is the parameter determining the initial domain containing the true motion in the
phase space, σ0 is the mean error. Under this assign of the domain of initial values
by its boundary is a surface of constant level of the minimized function /(q0) by
the method of least squares. A peculiarity of Equation (23) is the multiplicity of
solutions. However, using a generalized analogue of Newton’s method allows us to
define boundary points for the domain of possible motions exactly.
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TABLE IV

Determination of boundaries of initial domains of motion from observations of one
appearance. Asteroid Icarus

t , year �T , day. N σ0 �σ k σmax − σmin

1949 17 5 0′′.8 1′′.2 7 0′′.518

1953 14 11 1.9 0.1 2 0.134

1954 24 4 1.4 0.6 2 1515.000

1958 54 8 0.5 0.3 4 0.001

1965 30 10 0.9 0.4 4 0.562

1966 29 8 1.0 0.1 2 0.335

1968 65 17 0.5 0.1 4 0.008

496 0.5 1.1 12 0.008

1976 30 6 0.4 0.9 8 0.011

1977 11 3 1.4 1.4 3 1.687

1986 38 8 0.7 0.4 4 0.002

1987 73 46 1.2 0.1 3 0.002

1992 37 5 0.3 0.8 6 0.211

The complication of the problem of constructing initial domains of possible
motions is demonstrated by the data presented in Tables IV and V.

The estimations have been obtained for the examples of numerical simulation of
the motion of asteroids Icarus and Toutatis for different samples of observability. In
the capacity of the samples we have taken the observations of various appearances
of the asteroid. Initial domains of possible motions have been calculated by LSM-
evaluations of the vector of the initial parameters q̂0 and by the covariance matrix
of their errors D̂0. The orbital parameters calculated for the observations of all the
considered appearances of Icarus and Toutatis have been chosen as ‘true’ ones.
The gain factor k shows how the elements of the covariance matrix D̂0 have to
be changed so that the ‘true’ motion should belong to the surface of the ellipsoid

TABLE V

Determination of boundaries of initial domains of motion from observations of one appearance.
Asteroid Toutatis

t , year �T , day N σ0 �σ k σmax − σmin

1988–89 267 145 1′′.43 0′′.03 4 0′′.001

1992–93 282 347 0.890 0.004 3 0.005

1995–97 727 218 0.67 0.03 0.4 3.323
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enveloping the surface of constant level of the minimized function /(q0) of the
method of least squares.

In the first columns of the tables the year of a considered appearance is indic-
ated. In the second and third columns we have the time interval �T covered by
the observations and the number N of a considered appearance respectively. In the
fourth columns σ0 is the mean error of fitting observations of LSM estimations ob-
tained for observations of considered appearance. In the fifth columns we have the
difference �σ among mean errors of fitting observations of a considered appear-
ance of ‘true’ orbital parameters and the parameters obtained for this appearance.
In the sixth columns the quantities of the gain factor k are given. In the last columns
of the tables the maximal differences of the mean errors of fitting by observations
in a considered appearance for the orbital parameters calculated in different points
of the ellipsoid mentioned above are presented.

Analysis of the results presented in Table IV and V shows that the problem of
constructing the initial domains of possible motion is really complicated. In some
cases the quantities of the gain factor k are more than 3. It is evident that LSM-
estimations of covariance matrices of errors of initial parameters give apocryphal
submissive estimations of initial domains of possible motions. In the set of cases
the presentations of the surface of constant level of the minimized function sur-
faces of the ellipsoids contained the estimations of ‘true’ orbital parameters are
insufficiently precise.

4.3. ALGORITHMS FOR DETERMINING EVOLUTIONS OF THE DOMAINS OF

POSSIBLE MOTIONS

The system of differential Equation (20) defines an evolution of possible trajector-
ies of motion

q(q0, t), q0 ∈ N(q̂0, k̂
2q̂0),

and, in particular, an evolution of the reference trajectory q(q̂0, t). The traditional
way of the evaluation of the domains of possible motions of the system determined
by Equation (20) is the linear one, however more and more authors are biased to the
opinion that this way does not give the adequate description of possible motions of
the investigated object.

At the nonlinear approach the operation of displaying is realized by forming
a sufficiently thick ensemble of possible trajectories q(q̂i

0, t), beginning from the
initial domain:

qi
0 ∈ N(q̂0, k̂

2D̂0), i = 1 . . . , s.

Initial points of the trajectory qi
0, as well as the initial domain N(q̂0, k̂

2D̂0) are
determined by simulating the nondegenerated m-dimensional normal vector
(Ayvazyan et al., 1983)

qi(t0) = AηT + q̂0. (24)
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Here A is the triangular matrix such that

AAT = k̂2D̂0, η = (η1, . . . , ηm),

where ηj (j = 1, . . . , m) are independent (0, 1)-normally distributed random num-
bers; i = 1, . . . , s, where s is an amount of the initial points qi(t0), determined by
the length of simulated by random numbers generators sample of the vector η.

Our studies have shown that within the framework of model (20) for study-
ing probabilistic evolution of small bodies motions it is sufficient to construct an
ensemble from 500 up to 1500 trajectories.

Within the framework of the nonlinear approach it is easy to construct a map of
the type

{Cq}tt0 −→ {Cp}tt0 and {Cp}tt0 −→ {p̂(t), D̄p(t)}.
Here p is the vector of parameters different from the initial ones; t0 and t are
moments of time at which one formed the initial (start) domain N(q̂0, k̂

2D̂0) and
forecasted the domains {Cq}tt0 and {Cp}tt0, correspondingly; D̄p(t) is a matrix char-
acterizing the scatter of phase points of an ensemble of the trajectories q(qi

0, t) with
regard to the point q(q̂0, t) in the space of the parameters p.

Let us give several interesting examples.
On Figure 8 the divergence of the evaluations of the domains of possible mo-

tions of asteroid Toutatis obtained by the linear and nonlinear methods is shown.
The main value of the nonlinear method is the fact that obtained on its base evalu-
ations are much more profound and give a greater amount of interesting informa-
tion on object’s motion.

Figure 8. Comparison of nonlinear (•) and linear (◦) astimations of accuracy of numerical simulating
heliocentric positions of asteroid Toutatis in aphelia (lower) and perihelia (upper).

In Figure 9 the averaged evolution of the domain of possible motions of asteroid
Toutatis for a time interval of 1,100 and 100 000 revolutions is shown. Initial con-
ditions are determined from observations covering the time interval 1992–1993.
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Figure 9. The evolution of the domain of of possible motions of asteroid Toutatis in projection on the
orbital coordinate system planes. Unit of measurement is a.u.

From the given evaluations it is seen that the main deformation of the domain of
possible motions comes in the course of time along the reference trajectory. Full
uncertainty in calculated positions of an object comes after 100 000 revolutions,
when the region of possible motions covers the whole trajectory.

In Figure 10 the evolution of the domain of possible motions of Toutatis is
given, as has been stated, in detail for the time interval 1996–2016. Here �r is the
distance from a calculated object position to the ‘true’ position, σr is the calculated
mean quadratic error. The ‘true’ motion is determined from observations covering
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Figure 10. The evolution of the domain of possible motions of Toutatis in the time interval
1996–2016.

the time interval 1988–1993. The symbols V, E, M, J indicate the moments of
encounters and the least distances to Venus, the Earth, Mars and Jupiter, respect-
ively. The weight matrix P ∗ is calculated by all available observations. One can
see that atypical evolutionary picture of changing the domain of possible motion of
the asteroid and consequently the accuracy of forecast of its positions takes place
revolution after revolution. On this interval of time expansions of the domain of
possible motions do not occur but on the contrary under the action of perturbations
even somewhat decrease. Stabilizing factors here are approaches and resonance
with the Earth approximately 1 : 4 and with Jupiter 3 : 1.

5. Conclusions

Let us make conclusions as follows:

1. New Encke-type algorithms in Kustaanheimo–Stiefel variables have been
presented. The algorithms do not contain the equations for quick variables and
display high efficiency in numerical simulating the motion of special asteroids
and planetary satellites. An intermediate KS-orbit taking partially into account
the oblateness of a planet for approximating a quasi-circular equatorial motion
of an inner satellite has been suggested as well. Using this orbit in the Encke
method is most efficient when planetary oblateness is large.

2. The problem of numerical investigation of close encounters of small bodies
with large planets have been analysised. It has been shown that the use of a
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large scale computer word and a numerical high order method with the regu-
larized differential equations allows to put the error of numerical simulation to
insignificant digits.

3. New algorithms for determining initial domains of possible motions have been
suggested. The analysis of using linear and nonlinear algorithms for determ-
ining evolutions of the domains of possible motions are presented. Several
interesting numerical examples are given. These examples show that the main
value of the nonlinear method is the fact that evaluations obtained on its base
are much more profound and give a greater amount of interesting information
on motion.

The results presented have been partially published in Russian astronomical
periodicals but as a summary account like here are primarily given.
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33, 377–398.

Everhart, E.: 1974. ‘Implicit single sequence method for integrating orbit’, Celest. Mech. 10, 35–55,
Kluwer Academic Publishers.

Hairer, E., Norsett, S.P. and Wanner, G.: 1987. Solving Ordinary Differential Equations. Nonstiff
Problems, Springer-Verlag.

Herrick, S.H.: 1972. Astrodynamics Vol. II, Van Nostrand Reinhold Company, London, New York,
Cincinnati, Toronto, Melbourne.

Milani, A., La Spina, A., Sansaturio, M.E. and Chesley, S.R.: 2000. ‘The asteroid identification
problem III. proposing identifications’, Icarus 144, 39–53.

Muinonen, K.: 1996. ‘Orbital covariance eigenproblem for asteroids and comets’, Mon. Not. Royal
Astr. Soc. 280, 1235–1238.

Shaikh, N.A.: 1966. ‘A new perturbation method for computing Earth–Moon trajectories’, Astronaut.
Acta. 12, 207–211.

Sharkovsky, N.A.: 1990. ‘Modified encke methods’, Software of Theory of Artificial Satellite Motion,
Leningrad, ITA AS USSR, pp. 71–72 (in Russian).

Shefer, V.A.: 1990. ‘Application of KS-transformation in problem of investigation of motion of
unusual minor planets and comets’, Celest. Mech. & Dyn. Astr. 49, 197–207.

Shefer, V.A.: 1998. ‘Generalized encke methods for investigating perturbed motion’, Astronomy and
Geodezy, 16, 149–171, Tomsk State University, Tomsk (in Russian).

Sorokin, N.A.: 1991, ‘Differential equations of the motion of ASE in the problem of two fixed centers
and their integration’, Scientific Info., 69, 114–123, Astronomy Institute of Academy of Sciences
of USSR, Moscow (in Russian).

Stiefel, E.L. and Scheifele, G.: 1971. Linear and Regular Celestial Mechanics, Springer-Verlag,
Berlin, Heidelberg, New York.


