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INTRODUCTION

With the advent of quick-operating and multipro-
cessor computers, lately statistic simulation of possible
parameter values gets employer often for investigating
uncertainties in orbits determined from observations
the statistical simulation of the virtual values of orbital
parameters has become increasingly useful (Chernitsov
et al., 1998; Milani, 1999; Virtanen et al., 2001; Bodro-
vitsyna et al., 2001; Williams et al., 2005; Muinonen et
al., 2006; Avdyushev and Banschikova, 2007); this is
generally useful in planning future observations, the
identification of celestial bodies, and problems regard-
ing asteroid hazard.

A set of virtual values whose density answers the
probability density of the true values of orbital param-
eters is usually constructed starting by the use of esti-
mations of the linearized least-squares problem (LS).
However, the connection between the representation of
observations and the parameters being in general non-
linear, the involvement of linear estimations for an LS
problem for the statistical simulation of virtual values is
legitimate, provided only these values cover a suffi-
ciently small region in the parametric space (in which
the above connection may admit a good linear approx-
imation). Otherwise, linear estimations will be incapa-
ble of giving a reliable estimate of a stochastic scatter.

In the paper are discussed different methods
designed for the statistic simulation of possible param-
eter values. A new method is proposed for building an
extensive spread of virtual values when the nonlinearity
of an orbital model is considerable and it should not be
neglected. The method is baed on imitating Fisher’s sta-
tistics employed to specify the confidence region
(Draper, Smith, 1981) and it is realized by repeatedly
solving a nonlinear LS problem with various sampled
of pseudoobservations generated by appropriate ran-
dom varying the orbital model representations of real

observations. Moreover, the influence of the nonlinear-
ity caused by intrinsic curvature of estimation space
(Bates Watts, 1980; Draper, Smith, 1981) on the results
of simulating possible parameter values is numerically
explored and also the efficiency of all the considered
methods is investigated, especially in the case of small
samples of observations.

THE LEAST-SQUARES PROBLEM 
AND CONFIDENCE REGIONS

We want to solve the overdetermined system of
equations
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In this case, the best estimations  of the parameters
are obtainable from the least-squares principle:
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—A Monte Carlo-type method for simulating virtual values of the parameters in inverse orbital dynamics
problems for highly nonlinear cases is proposed. The method is based on imitating Fisher’s statistics employed to
specify the confidence region, and is implemented by solving repeatedly nonlinear least-squares problems with var-
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In the nonlinear case, the Gauss–Newton iterative
method

 

(5)

 

is generally useful in finding estimation .
The simulation of virtual values of the parameters is

closely bound with the notion of a confidence region. In
linear problem (3), a 
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 confidence region in the
space of estimated parameters 

 

q

 

 is, by definition, an
ellipsoidal set, with the center  which contains the
true solution  (obtainable with precise measurements

of  i.e., when 

 

δ

 

P

 

O

 

 = 0) with probability 
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. Formally,
a confidence region is given as follows (Draper, Smith,
1981):
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By (6), the random vector 
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 is asymptotically nor-
mal in 
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-dimensional space, the density function being
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METHOD OF DISTURBED OBSERVATIONS

There are several methods
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 to simulate the virtual
values of the parameters with probability density (7).
We feel, however, that the most simple approach should
involve the matrix (factor) 

 

C

 

1/2

 

 of the Cholesky decom-
position 
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. Such a matrix exists and is
unique, since the covariance matrix (8) is symmetric
and positive definite.

An algorithm for simulating the virtual values of the
parameters with the involvement of a Cholesky matrix
is based on the formula (Aivazyan et al., 1983;
Andronov et al., 2004)
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here, 
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 is a 
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-dimensional normally distributed random
vector with zero expectation and unit variance. One can
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See, e.g., (Chernitsov et al., 1998; Bordovitsyna, 2001; Muino-
nen, 2006).
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easily verify that vector q is normally distributed with
probability density (7). The repeated substitution of
standard multivariate normally distributed random vec-
tors h into formula (9) gives a finite set of virtual values
of the parameters of q as a discrete representation of
probability density (7).

It is worth noting that the stochastic scatter of q can
be simulated using (4) by the repeated introduction of
normally distributed unbiased vector (perturbation) δP
with variance σ2 into PO; i.e., by the formula

q = (ATA)–1AT (PO + δP) =  + (ATA)–1AT δP. (10)

One may readily check that in this case, the scatter
of vector q will also correspond to the probability den-
sity (7), and in fact, by (10), may be thought of as rep-
resenting the set of solutions of a liner least-squares
problem with various samples of disturbed observa-
tions PO + δP.

In the nonlinear case, if errors δPO are sufficiently
small and thus incur small parametric errors in q, then
LS estimations may be considered as far as the linear
problem (3) is concerned; therefore, in order to simu-
late the virtual values of the parameters, we may invoke
algorithm (9), where, however, the Cholesky matrix
C1/2 is calculated for the covariance matrix given in esti-
mation 

C = σ2Q–1. (11)

Unfortunately, in the highly nonlinear case, when
the scatter of parameters in q is sufficiently large, the
utilization of algorithm (9) is not valid, inasmuch as the
confidence regions may be distinctly different from the
ellipsoidal regions.

Assume now that there exists a system K of param-
eters r, relative to which the LS problem becomes lin-
ear; moreover, parameters q and r being in one-to-one
correspondence: q = T(r). Further, we obtain the set of
LS solutions of (1) in the spaces of q and r with various
samples PO + δP. It is readily verified that the estima-
tions  and  which minimize objective functions
S(q) and S(T(r)) with the same sample PO + δP, are con-
nected by the relation  = T( ). Consequently, the LS
scatter in the space of q an image of the LS scatter in
the space of r and vice versa. In addition to that, the
scatter of LS solutions in the space of r adequately rep-
resents the set of virtual values of the parameters.
Hence, the LS scatter in the space of q will also provide
an adequate representation of the set of virtual values of
the parameters, but now with the probability density

where Cr is the covariance matrix of r; also, |∂q/∂r|
should be viewed as the ratio of the corresponding ele-
mentary volumes in the spaces of q and r.
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Thus, in the nonlinear case, the set of virtual values
of the parameters may be simulated by solving repeti-
tively the LS problem with various artificially produced
samples of observations2, PO + δP:

q : S(q)= ||PO + δP – PC(q)||2  min. (12)

It worth pointing out that this approach does not
involve the passage to the parameters r. However, for its
applicability we need to know that such a system of
parameters exists. On the construction of such sets of
the parameters relative to that the problem becomed
either linear or weakly nonlinear, one can find, for
example, in citep (Beale, 1960; Hartley, 1964).

One obvious deficiency in the simulation of the LS
scatter is the repeated iterative solution of the nonlinear
least-squares problem (5), which sometimes may
involve too much computer time. For example, in the
example below it took about one day to construct the set
of all virtual values of the parameters (like the LS scat-
ter over 10000 solutions) using an Intel® Pentium®
Dual-Core 3GHz processor.

METHOD OF DISTURBED ESTIMATIONS

According to the geometric interpretation given in
(Bates, Watts, 1980; Draper, Smith, 1981), a point PC =

PC( ) in an N-dimensional observation space P is an
orthogonal projection of point PO in the K-dimensional
estimation subspace PC(q) (Bates, Watts, 1980; Draper,
Smith, 1981). Consequently, the set of virtual values of

2 This nonlinear evaluation of parametric accuracy, called the
Observational Monte Carlo method, had been implemented
(however, without any justification) in the software Find_Orb,
obtainable from the website www.projectpluto.com

q̂

the parameters q, viewed as the scatter of LS solutions
(12), can be thought of as carrying into the parametric
space q the set of points PC obtained by the orthogonal
projection of the set of all possible measurements PO +
δP into the estimation subspace PC.

By (6), a confidence region in the linear case is the
set of points PC satisfying

||PC – ||2 ≤ (κασ)2. (13)

Assigning the confidence region to the center  =

PC( ) =  we obtain a certain spherical region

||PC – ||2 ≤ (κασ)2, (14)

which contains, with probability α, an approximative

solution  = PC( ). From (13) and (14), it follows

that the differences PC –  and PC –  have a K-dimen-
sional normal distribution with the same variance. This
agreement in the distribution of probability densities in
simulating the virtual values of the parameters is neces-
sary, and it takes place in the linear case. In fact, sub-
space PC(q) being flat, the distribution of estimations PC

(viewed as projections of possible measurements PO + δP
with the same scatter δP) is conserved irrespective of
the position of PO (Fig. 1).

At the same time, if the estimation subspace PC(q) is
not flat, then this situation does not hold in general,
because, as distinct from the flat case, the set of mea-
surements PO + δP, after being projected into the sub-
space, has a density which is dependent on the distance
from PO to the subspace: the projection becomes more
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Fig. 1. Distribution of densities (bell curves) of the orthogonal projection of the sets of possible measurements onto the estimation
subspace in the flat (left-hand part) and nonflat (right-hand part) cases. For purposes of clarity, the situation with the position of the
sets is shown as exaggerated; in fact, in the space of the measurements they are located much nearer to each other, the significant
parts overlapping.
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dense as PO moves away from the center of the curva-
ture of PC(q) and vice versa (Fig. 1).

In order to compensate for the effect arising from
the misalignment of probability densities when simu-
lating the virtual values of the parameters, it will be
convenient to employ a modification of scheme (12):

q : S(q) = ||  + δP – PC(q)||2  min, (15)

Here, the measurement vector PO is replaced by its pro-

jection  One may readily show that in the linear
case, the modified scheme produces, like (9) and (10),
a normally distributed vector q with probability den-
sity (7). This scheme will be most efficient if the curva-
ture of space PC(q) is constant at least near the projec-
tion of the set.

Scheme (15) is frequently useful in practice for sim-
ulating the virtual values of the parameters (Rohlfs et al.,
1986; Press et al., 1987; Dambis et al., 1995; Nikiforov,
1999); however, it is never thought of as a means for
tackling problems involving nonlinearities due to the
internal curvature of the estimation subspace (Bates,
Watts, 1980; Draper, Smith, 1981).

Further, it should be noted that even in the linear
case the use of the method of disturbed observations (or
estimations), like the approach involving the Cholesky
matrices, gives only an approximate representation of
the virtual values of the parameters, the representation
becoming worse as the number N of measurements
becomes smaller. In fact, it is assumed in schemes (9)
and (10) that vector q has a Gaussian distribution;
whereas, according to the definition of the confidence
region (6), the parametric vector q is only asymptoti-
cally normal. In this connection, in order to improve the
simulation of virtual values of the parameters, we put
forward below simple modifications of schemes (9) and
(10), which, however, have considerable practical
importance.

First, let us recall that in the linear case the notion of
a confidence region is given from the knowledge that
the random variable

(16)

(with respect to q =  and with various samples of
observations with all possible normal errors) is itself
Fisher distributed with degrees of freedom K and N – K;
i.e.,

 (17)

where  and  are random variables distributed
as χ2 squared with degrees of freedom K and, respec-
tively, N – K. Consequently, the set of virtual values of
q with respect to a fixed estimation  should be con-
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structed so as to ensure that U would be also Fisher dis-
tributed with the same degrees of freedom.

In order that scheme (9) be capable of modeling this
vector q, it is sufficient to introduce the random value

 as follows:

(18)

In fact, applying (18) gives

 

Calculating the inner products of its left and right-hand
sides and invoking (8), we obtain

Hence, by (17), U = F(K, N – K).
A similar improvement applies to scheme (10), giv-

ing

 (19)

Hence, by (19),

Since A(ATA)–1ATδP = σh, calculating the inner prod-
uct of left and right-hand sides and solving it for U
(from (16)), we infer that this variable, as before, is
Fisher distributed with degrees of freedom K and N – K.

Thus, extending scheme (19) to the nonlinear case,
we obtain

q : S(q) = ||PC + δPr – PC(q)||2  min, (20)

where r =  Clearly, since scheme (20)
degenerates into scheme (15) as the number of observa-
tions N increases, we may assume that the comparative
effectiveness of the first will be greater the smaller
number N is.

A modulation factor r multiplying perturbations δP
is, in essence, necessary for accommodating the fact
that variable σ2, regarded as a statistical estimation of
the variance of observation errors s2 and obtainable
from the sample from observed data with random
errors, is itself a random variable. If observation errors
are normal, then, in the linear case,

In the nonlinear (nonflat) case, the distribution of σ2 is
unknown in general. In order to compensate for the
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absence of information about the distribution of σ2, we
suggest the simulation of virtual values of the parame-
ters be held at two stages. The first stage involves the
preliminary use of scheme (15), where samples of ran-
dom perturbations δP are simulated with mean square
error σ2 and are retained together with the correspond-

ing estimations  obtainable via the inverse problem.
Thus, we gather information about the distribution of

σ2/s2 assuming that it is the same as for /σ2. Then, at

the second stage, we perform the statistic simulation by
scheme (20) with the involvement of the retained sam-
ples and the factors r = σ/σ

*
. Clearly, in the flat case, the

two-phase approach produces the same results as
scheme (20) with the original multiplier r.

NUMERICAL EXAMPLE

The above algorithms for simulating the virtual val-
ues of the parameters were examined in the context of
a highly nonlinear inverse problem in satellite dynam-
ics. For the newly discovered Jovian satellite S/2003
J04, LS estimations of orbital parameters q (which we
took to be six components of the dynamic state vector
(position and velocity) q = (x0, )T at epoch t0) were
determined based on meager observations (angular
coordinates) PO (Emel’yanov et al., 2006) and by the
use of high-precision simulation of its motion PC(q)
(Avdyushev and Banschikova, 2007), the mean square
error being σ = 0.20″.

The observation of the satellite covered only a short
orbital arc (11 observations during several dozens of
days), and so, even with the initial epoch t0 lying inside
the observation interval, the probability regions turn out
to be extremely large (Avdyushev and Banschikova,
2007) and, hence, the nonlinearity effect becomes sub-
stantial.

We took as true observations  the LS estimations
of orbital parameters determined by real observations,
and based on these data we simulated precise observa-

tions  = PC( ) of the satellite at real instances of

observations. Then, we introduced  to the sample of
normal unbiased errors δPO with variance s2 = σ2, and

by observations  + δPO we obtained the LS estima-
tion for  for which the mean square error was found
to be σ = 0.21″ . Finally, using algorithms (9) and (15),
the set of virtual values of the parameters with respect
to estimation  was constructed; each set was repre-
sented by 10000 solutions. In order to sharpen the non-
linearity effect, we deliberately removed the initial
epoch t0 from the observation time interval, its distance
from the epoch of observations was in the order of one
orbital period of the satellite.

σ*
2 ,

σ*
2

ẋ0

q

P
O

q

P
O

P
O

q̂,

q̂

We note that in the construction of the set of virtual
values of the parameters via scheme (15), we took esti-
mation  as the initial approximation q0 in the Gauss–
Newton method (5); however, since the region covered
with LS solutions is vast, such an approximation does
not always yield the convergence of the iterative pro-
cess. In this case, use was made of the damped Gauss–
Newton method; that is, the correction factor in scheme
(5) was reduced by a factor of 100. Despite the appre-
ciable retardation in the iterative process, it was capable
of providing convergence for any samples of observa-
tions.

Figure 2 shows the simulation results, in jovicentric
coordinates, of various orbital parameters of the satel-
lite via different algorithms. Clearly, the distributions
of possible initial positions of the satellite give us a use-
ful indication of the sizes of confidence regions of both
linearized and nonlinear problems corresponding to a
probability in the order of 99.99%.

Thus, as is apparent from the picture, both probabil-
ity regions are extremely vast. The region of the linear-
ized problem is an elongated ellipsoid; however, it does
not cover the true solution (unlike the region represent-
able by LS solutions (15)).

It is worth pointing out that the probability regions
intersect only near the estimation  and, hence, algo-
rithm (9) is believed to be justified provided only the
probability regions are considerably smaller (down to
several dozen or more).

It is also interesting to note that the density of the
distribution of U(q) (from (16)), obtainable through all
possible orbital parameters q (from (15)), is close (up to
the scale parameter K–1σ–2) to the probability density

function  with degree of freedom K = 6 (Fig. 3). In
this case, the χ-square test, as calculated on the interval
in question, with partition number 100, was found to be
χ2 ≈ 87, which is considerably smaller than the standard

95% quantile:  ≈ 123. In the linear case, U(q) is

exactly  whereas its distribution with possible
parameters (9) has absolutely nothing to do with distri-

bution 

As we have already observed, the simulation of the
virtual values of the parameters by the use of a repeated
solution of the LS problem is justified merely by the
existence of a system of parameters r, with respect to
which the LS problem becomes linear. Such a system of
parameters can be produced if the K-dimensional sub-
space defined by PC(q) in the N-dimensional subspace
of measurable values P is flat (Beale, 1960; Bates,
Watts, 1980), i.e., when each point of this subspace is
given in some Cartesian system of coordinates contain-
ing K basis vectors. In addition to this, the coordinates
of this system may be taken as parameters r.

In the nonlinear LS problem, the estimation sub-
space PC(q) is, in general, nonflat, and a system of

q̂

q̂,

χ6
2

χ95%
2

χ6
2;

χ6
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parameters r, which linearizes the problem, may fail to
exist. Nevertheless, if the subspace differs nonessen-
tially from a flat one (in the range of estimations of inter-
est), then the method of disturbed observation is quite
practical for simulating virtual values of the parameters.

Figure 4 indicates the distribution of angular devia-
tions ϕ of the subspace PC(q) at points of virtual values
of q from the tangent space in the LS estimation  of
the flat subspace. Angle ϕ is given by the formula

where  = PC( ). Clearly, for a flat subspace we have

ϕ = 0, because the vectors PO –  and PC(q) –  are
orthogonal (Draper, Smith, 1981; Bates, Watts, 1988).

q̂

90° ϕ–( )cos
PO P̂

C
–( ) PC q( ) P̂

C
–( )

PO P̂
C

– PC q( ) P̂
C

–
----------------------------------------------------------,=

P̂
C

q̂

P̂
C

P̂
C

It is evident from the figure that the values of ϕ are
sufficiently small and most of them are majorized by
0.1°. Consequently, the strong nonlinearity of the prob-
lem is mostly due to the unfortunate choice of estimated
parameters (Bates, Watts, 1980; 1988). We note that
this measure of the so-called intrinsic nonlinearity was
put forward earlier in (Beale, 1960), and in fact it can
be expressed in terms of angle ϕ, namely, sin2ϕ (Bates,
Watts, 1980). In any case, we may assume that the
above set of LS solutions does represent well the distri-
bution of virtual values of orbital parameters.

Thus, for the legitimate employment of scheme (12)
in nonlinear problems, it is necessary to have some idea
of how big the deviation of subspace PC(q) is from a flat
one; this can be achieved, in particular, by the above
method.
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As the estimation subspace in the inverse problem is
almost flat, it follows that the sets of virtual values
obtainable via schemes (12) and (15) lie very close
together. Nevertheless, it is apparent from Fig. 5 that
the scatter of possible satellite positions, as produced
by scheme (15), is considerably smaller that the scatter
according to scheme (12). In any event, one should bear
in mind that the relation between the sizes of the region
to be filled with possible satellite positions may be dif-
ferent: this in fact depends upon the relative position of

the vector of observations PO and the estimation sub-
space PC(q), and also upon the degree of its intrinsic
curvature.

The modified scheme of the method of disturbed
estimations (20) has been examined in the same prob-
lem, but with the involvement of only some observa-
tions (per four time points (N = 8)), which also cover
the whole observation period of the satellite. It is with
these conditions for the inverse problem (with meager
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observational data) that one may expect the manifesta-
tion of the high effectiveness of scheme (20).

As before, given a sample of artificially produced

observations  + δPO of size N = 8, we obtained a new
estimation  for which the mean square error was
σ = 0.13″. Then, by schemes (15) and (20), we simu-
lated the possible positions of the satellite, the estima-
tion σ being used for the simulation of the scatter of
perturbations δP. The results are given in Fig. 6.

It is apparent from the figure that the sets of virtual
values, as constructed by different schemes, are mark-
edly different from each other and describe different

P
O

q̂,

distributions of the probability density in the coordinate
space. Also, at the point of the true position of the sat-
ellite, the probability density via scheme (15) turns out
to be significantly smaller than that via scheme (20). At
the same time, if the scatter of virtual values is used to
indicate the size of the corresponding confidence
region, then we may say that scheme (15) represents a
confidence region which is significantly smaller than
that represented by scheme (20), and the latter, unlike
the first, provides for a confident covering of the true
values of the parameters. Taken all together, this clearly
lends strong support to modified scheme (20)—this
being more efficient from the viewpoint of the statisti-
cal simulation of virtual values of the parameters.
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Fig. 5. Possible positions of satellite S/2003 J04 on the coordinate plane as constructed by algorithms (12) (circles) and (15) (points).
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Fig. 6. Possible positions of satellite S/2003 J04 on the coordinate plane as constructed by algorithms (15) (points) and (20) (small
squares).
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CONCLUSIONS

The paper puts forward a new method for simulating
the virtual values of the orbital parameters in nonlinear
inverse problems. The method was tested on a satellite
dynamic problem with meager observations, in which,
due to the poor accuracy in the determinate orbit, the
scatter in the virtual values was very large and, hence,
highly distorted by the nonlinearity. The results
obtained established that the method in question is
more efficient than its analogous methods, especially
when the orbit is determined by a meager sample of
observations.
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