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1. INTRODUCTION

One of the key difficulties in determining the orbit
of any inner satellite is attributed to its quick motion
around a planet: the frequency of the satellite revolution
is so high that, during one year, it makes nearly a thou-
sand rotations or even more. This peculiarity of motion
leads to the fact that the target function in inverse prob-
lems minimized over orbital parameters has a strongly
ravine structure that results in ill conditionality of the
quadratic matrix which approximates the target func-
tion. In addition, it is known from the optimization the-
ory that the minimization of the ravine functions is very
difficult and demands special approaches. When con-
ventional methods of the Gauss–Newton type are used
to solve such problems, the iterative schemes of these
methods converge badly and have small convergence
domains; in fact, their application is possible only at
good initial approximations.

Another difficulty is connected with the ambiguity
of determining a satellite orbit that takes place when the
orbital parameters are determined based on several
groups of observations distributed over a long time
interval. In this case, the target function can have many
equipollent minima and it is difficult to single out the
one corresponding to the best orbit parameter estimates.
Thus, even if the iteration scheme converges, the practi-
cal value of the orbit calculated can still be doubtful.

The present paper considers the peculiarities of the
inverse problems based on the data on inner Jupiter sat-
ellites: Amalthea (J5), Thebe (J14), Adrastea (J15), and
Metis (J16). 

The first observers of Amalthea, Thebe, Adrastea,
and Metis (Barnard, 1892; Jewitt, et.al.,1979; Synnott,
1984) made attempts to determine their orbital ele-
ments based on a few observations. Each new observa-
tion encouraged researchers to make successive adjust-
ments to the satellite orbits. Thus, the orbit of the fifth
Jupiter satellite discovered as long ago as in 1892 and
having been observed for more than a century has been
studied better than the orbits of the other three satel-
lites, which were only discovered in 1979. The satellite
Thebe, contrary to Adrastea and Metis, has a wider
range of observations whose processing does not cause
any problems and its orbit has been reliably deter-
mined. Along with it, the last two satellites have been
observed so rarely that their observations during a
rather long time period are distributed only over a few
groups. Thus, the processing of these observation data
aimed at correcting the orbit parameters is connected to
the above difficulties.

Nearby satellites move inside the orbits of Galilean sat-
ellites along almost circular Jovian equatorial orbits at the
distance from Jupiter of 1.8–3.1 times its radii. Due to the
extreme proximity of the satellites to Jupiter, their motion
is subjected to the powerful gravitational effect of the mas-
sive planet and, thus, the frequencies of the satellite revo-
lutions are very high and the periods corresponding to
them lie within the range of 0.3–0.7 days.

The first models of Almatheaís motion were quite
simple and took into account only first-order perturba-
tions from Jupiter’s oblateness (Tisserand, 1893; Cohn,
1897). Later, researchers began to use kinematic mod-
els using the formulas of the precessing Keplerian
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ellipses (Van Woerkom, 1950; Sudbury, 1969; Jacob-
son, 1994). Despite the simplicity of these models, they
represent Amaltheaís motion rather well (even in keep-
ing with the accuracy of modern observations) and,
thus, continue to be used today to process satellite
observations (Jacobson, 1994). However, it should be
noted that Sudbury (1969), using the model of the pre-
cessing ellipses, failed to unite early observations with
a 30-year time gap within one system of orbit parame-
ters. Hypotheses explaining the reason for this failure
attribute it to the imperfection of the model used have
been set up (Sudbury, 1969; Pascu, 1977). Neverthe-
less, in our opinion, the most probable reason for this
failure lies in the characteristic peculiarity of process-
ing satellite observations which we will consider fur-
ther in this paper. In addition, it should be noted that
Jacobson (1994) managed to overcome this difficulty
without resorting to more complex models. Attempts
have been made to construct dynamic models based on
highly accurate theories of Amaltheaís motion (Kiry-
ushenkov, 1969; Arazov, 1972; Breiter, 1996), which
are known to not have found wide dissemination in
astronomy practice. The analytical theories at present
seem to give such an excessively high accuracy (rela-
tive to the accuracy of observations) that the models
based on them are not in demand. As for satellites such
as Thebe, Adrastea, and Metis, the precessing ellipses
are used, as a rule, to interpret their motions.

In the present paper, we turn to the numerical inte-
gration of satellite orbits (Banshíikova and Avdyushev,
2006), where, for each satellite, the components of its
initial dynamic state vector in the phase space of the
rectangular coordinates and velocities serve as deter-
mined parameters. The numerical models are based on
the high-accuracy differential equations of motion
which take into account the main gravitational forces as
well as the relativistic effects. Like other authors, we
determine the orbital parameters in the framework of
the least-squares problem based on the available
ground-based observations of the satellites; however, to
efficiently seek a solution to the problem, we apply a
combined approach comprising well-known iteration
methods of Gauss and Newton and a gradient descent
together with a so-called projection method. In addi-
tion, the minimized target functions of the problem
were studied with the intent of finding the plurality of
the minima and to consider if the corresponding esti-
mates of the orbital parameter are adequate for describ-
ing the satellite motions. 

THE PROBLEM OF AMBIGUOUS ORBIT 
DETERMINATION
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The orbits of the inner satellites can also be repre-
sented in form (1) where, however, some 
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reveals the genesis of the solution set problem, which
can occur in the inverse problems of the inner satellite
dynamics. Indeed, in practice, the orbital parameters of
the satellites are determined, as a rule, from the condi-
tion of reaching the minimum by a function similar to
(2), which expresses a degree of the proximity of the
observed and modeled positions of the object in space
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. At least one of the parameters is sure to be associated
with the frequency 
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, but it is this very circumstance
that leads to an ambiguous definition of the satellite
orbit.

Let us consider the problem of the solution plurality
in greater detail using the example of the circular prob-
lem, where we can easily obtain obvious and, at the
same time, practically useful results allowing one to
evaluate the full importance of the problem considered.

CIRCULAR PROBLEM

A circular orbit in a complex plane can be repre-
sented as 
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where x is the position of the point, a is the orbit radius
(the semimajor axis), E is the fast phase (anomaly), n is
the revolution frequency (mean motion), t is the time,
E0 is the phase at the initial time moment t0, and µ is the
gravitational parameter.

Let us consider a family of orbits (3) and estimate
the difference between x and the  positions on the

orbits (a, E0) and ( ), respectively. According to
(3), the difference δx is easily transformed into

(4)

where α = (a – )/  β = E0 –  ν = (n – )/  and
λ = (t – t0). Assuming that α � 1 with an accuracy up
to the first order of smallness, we will have an estimate
2ν = – 3α. Then, in accordance with (4), the square of
δx will be

(5)

The behavior of |δx|2 at small α is thus seen to be
mainly determined by the function

f = α2 + 2(1 + α)(1 – cosϕ). (6)

Figure 1 gives the behavior of the function f versus
α and β at λ = 10. The surface geometry specified by f
is seen to have a ravine structure. Here, note that an
increase in λ leads to an increase in the ravine shape
of f.

Now, assume that the solution of  represents the
observed positions of the celestial object on a complex
plane at certain moments ti, and set the problem of find-
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ing such values of the α and β parameters, which would
give the minimum of the target function:
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where N is the number of observations. Let us consider
the observations for which |λ| � 0. Then, the behavior
of σ2 versus α and β will be mainly determined by trig-
onometric components. Thus, we must be interested, in
fact, in the function having the type

(8)

Note that, at a enough large λi differing by magnitudes
less than on the order of α–1, the function will behave
itself as one trigonometric component:

fcos ≈ 1 – cosϕ,

where one of the values of λi is chosen as λ. Conse-
quently, all observations with such λi can be grouped
and considered as one observation. If there are several
such groups, the function behavior can be represented as

(9)

where M is the number of groups, kj is the weight of the
j group determined by the number of observations in
the group Nj, and λj is one of the values of the λ j group.
Thus, weíll assume that λ1 � λ2 � … � λM.
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Fig. 1. Behavior of function f = α2 + 2(1 + α)(1 – cosϕ) at λ = 10.
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Using the known trigonometric identities, F can be
rewritten as

(10)

From this, it follows that F is 2π periodical over β and,
if α is fixed, it has the only minimum at the half-space
interval (β0 – π, β0 + π) for any β0 ∈ (–∞, +∞). Conse-
quently, the area of investigation of F over β can be
reduced to any half-space 2π long.

Let us introduce the characteristic

(11)

which is peculiar, because it does not depend on the
choice of the initial epoch. Really, the change in the ini-
tial epoch t0  t0 + ∆t in accordance with (9) leads to
a transformation of the shift along β:

In view of the above properties of F,

Note that the characteristic Φ(α) is a single-valued
function of α and, thus, the minima of Φ(α) over α will
unambiguously correspond to the minima of F(α, β)
over α and β ∈ (–π, +π). From (10), we can easily get
the formula for Φ:

Φ(α) = 1 – A(α). (12)

It is not difficult to see that the coefficients c and s can
be represented as

It should be specially noted that the surface geome-
try assigned by the function F(α, β) in the neighbor-
hood of the minima is strongly ravine. It is mainly stip-
ulated by large ωj. Therefore, with an accuracy up to
second-order small values, the behavior of F(α, β) in
the neighborhood of a trivial minimum α = β = 0 can be
represented by the function
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The equation Q(α, β) = const describes a certain ellipse
in the plane (α, β) with its center in the trivial mini-
mum. It is known from the analytical geometry that the
square of the ratio of C of the major ellipse semiaxis to
the minor one can be represented as

From here, taking (14) into account, for enough large
ωj, weíll have

C2 ~ κ11. (15)

However, the ravinity can be slightly reduced by
choosing the initial epoch t0. According to approximate
estimator (15), the ration C2 will be close to minimal at

where tj is one of the observation epochs of the j group.
Hence, to decrease the ravanity of F(α, β), the simple
average of all observation epochs should be taken as the
initial epoch. Chernitsov (1975) made first mention of
this. In addition, such a choice for the initial epoch
reduces the quadratic form of (13) to a canonical one as
κ12 vanishes.

To analyze the function F, it is more convenient to
represent it as

(16)

Here, l0 and lj ∈ [0, 1] (j = 1, 2, …, M) are the time dis-
tribution of the initial epoch and the observation group
with regard to the first group, respectively.

Let us consider two groups of observations (M = 2)
of the same weight (k = 1/2). This case corresponds to
the distribution of the ground-based observations of the
inner Jupiter satellite Adrastea (J15) currently avail-
able. Figure 2 gives the behavior of the function F(ζ, β)
(16) at different l0 ∈ [0, 1/2]. 

It is evident from the figure that variations of the
parameter l0, i.e., variations of the initial epoch, result
in the shift of the geometry of the surface F(ζ, β) along
β. Thus, a degree of the surface ravinity changes as
well: thus, ravines at l0 = 0 (the initial epoch in the
neighborhood of the first observation group epochs) are
visibly more elongated than those at l0 = 1/2 (the initial
epoch lies in the center of the time interval considered).
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These results confirm our conclusions above concern-
ing the behavior of the function F. At the same time, the
characteristic Φ remains constant for all l0) (Fig.3). In
the general case, at different k1 = k and k2 = 1 – k,where
k ∈ (0,1), the characteristics of Φ in accordance with
(10) and (12) can be represented as 

Φ 1 1 2k 1 k–( ) 1 ζcos–( )– .–=

From the presence of a trigonometric component in the
characteristics Φ it follows that for any two groups of
observations there is a manifold of equipollent minima
F corresponding to ζ = 2πm or
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Fig. 2. Behavior of F(ζ, β) for two groups of observations of the same weight and different l0: 0.0, 0.2, 0.4, and 0.5 (from the top
down, respectively) (Adrastea).
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where m are integers and R is the number of revolutions
during λM – λ1.

The case of three groups of observations (even if
they are equilibrium) is more difficult to investigate.
Thus, let us consider only a particular case correspond-
ing to the distribution of ground-based observations of
Metis (J16): k1 = 0.28, k2 = 0.16, k3 = 0.56, l1 = 0, l2 =
0.92, l3 = 1.

The characteristic Φ (Fig.4), as it is in case of two
observation groups, has a manifold of minima. Strictly
speaking, a distinctive feature of the characteristics for
three groups is the fact that these minima are not equi-
pollent and in the considered variation interval ζ there
is an explicit minimum corresponding to the true solu-
tion.

However, if the distribution of observation groups is
such that the values of lj satisfy the resonance relation
of the type

(18)

where mj � 0 are the integers, a manifold of absolute
minima F can exist. 

The higher the density of the minima distributions
along ζ, the lower the resonance order and the smaller
the values of mj. An example of the observation group
resonance distributions for M = 3 is given in Fig. 5,
where the same weights as those in the Metis observa-

m jl j

j 2=

M

∑ 0,=

tions are used. Here, we have the resonance l2/l3 = 2/3,
which leads to a plurality of the absolute minima with
the interval 6π uniformly distributed along ζ. Evidently,
due to the increase in resonance order (18), the increase
in the number of fragmentary M groups will decrease
the density of the absolute minima.

The case of the multiple uniformly distributed and
equilibrium groups is also of interest. It is not difficult
to show that if M is large enough

Then,

The behavior of Φ∞ is given in Fig. 6, where we see
that, even in the case of the dense distribution of the
observation groups, the function F will also have a set
of minima among which only one absolute minimum is
prominent.

From Fig. 6 we can retrieve other information,
which is also useful for gaining practical knowledge on
the target function behavior. We assume that to mini-
mize the target function σ2, we use a numerical (itera-
tion) method of the Gauss–Newton type. Then, the plot
in the figure givesmarginal values of the maximum pos-
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Fig. 3. Behavior of Φ(ζ) for two groups of observations of
the same weight (Adrastea).
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sible ζ, at which the iteration method can still be con-
verged to a trivial minimum. If the initial approxima-
tion of the orbital parameters is such that |ζ| > 2π or,
otherwise, the error in the semimajor axis is so large
that

then, the method wonít be convergent even in the case
of a dense time distribution for the observation epochs.
Evidently, the interval of convergence (overα) to a triv-
ial minimum will only become shorter during the thin-
ning of the observation data (see, e.g., Figs. 3–5). We
think that this possible reason for Sudburryís failure
(1969) in his attempt to find a uniform system of
Amaltheaís elements based on two groups of observa-
tions separated by a 30-year-long time interval. The ini-
tial parameter estimates were evidently so rough that
they simply didnít fall into the area of the minimization
method convergence. 

In spite of the fact that at |λj| � 0 the target function
σ2 (7) is rather well represented by its trigonometric
component fcos (8); the first one, contrary to the latter,
will always have only one absolute minimum at α =
β = 0 corresponding to the intrinsic solution of 
where the target function vanishes. It is attributed to the
fact that σ2 has a quadratic term α2. In other minima,
the target function takes on different (nonzero) values.
Thus, in our case, the condition of the least value of σ2

at the set of all minima can be taken as the criterion of
the true solution x (according to observations of ). 

Note, however, that, for near-resonance distribu-
tions of lj, only the minima at which the function σ2 is
nearly zero can take place. Thus, the higher the density
of their occurrence, the lower the order of their commen-
surability. Let us call these minima as pseudotrivial.

In addition, it should be noted that, if a is fixed and
n (independent of a) and E0 are considered as the
parameters to be estimated, then the function σ2 will be
similar to fcos with all its peculiarities, but, in this case,
with regard to ν (4) and β.

By now, we have assumed that the observations rep-
resented by the solution  are accurate, but, in case of
(random) errors in δ  , the function σ2, generally
speaking, will not take on zero values and, in addition,
the most plausible solution in the neighborhood of α =
β = 0 cannot give an absolute minimum: due to errors,
the status of an absolute minimum can move to one of
the pseudotrivial minima. Consequently, in this case,
the condition of the lower-range value of σ2 cannot be
taken as a criterion of the maximum likelihood.

Of particular interest is the case when in anomaly E
there are secular errors λ* = n*(t – t0), which manifest
themselves in practice as the results of unmodeled
effects, in particular, when some force models are
either ignored or simplified. It is easy to show that the

α 2
3
--- 1

R
---,>

x,

x

x,
x

effect of secular errors λ* leads to a shift in function fcos
(8) along α, while corresponding values of the function
maxima are preserved. Thus, the parameter ϕ is trans-
formed to the form

It follows, for example, that, even if a simplified
(rough) and a complicated (a more accurate) model
yields the same minima of target function σ2, it cannot
be chosen in favor of the first model because the values
of σ2 determined in the case of α 2 is minimized and
will be fundamentally different.

Note, finally, that the set of σ2 minima will take
place only for M > 1. In the one group of close-range
observations,

This implies that the target function for M = 1 must
have the only minimum at α = β = 0.

Hence, the target function σ2 (7) (for M > 1) has a
set of minima. Thus, when using numerical (iteration)
methods for the minimization of σ2 over a and E0 (3),
the solution obtained will directly depend on the chosen
initial approximation. Thus, from among all minima,
we cannot always recognize the one corresponding to
the true solution to  In particular, it can take place
when |λj| � 0.

THE GAUSS–NEWTON METHOD

Let us have N-observed positions of  in the L-
dimensional space at time moments ti (i = 1, …, N). It

is necessary, based on  observations, to determine K
orbital parameters of q.

Usually, the determination of q is reduced to the
minimization of the functional

(19)

where ρ is the metric in space p, while  = pC(ti, q) is

the numerical representation of  over q based on the
orbital motion modeling. Let us assign the metric as

where p11, …, pL1 and p12, …, pL2 are the components of
vectors p1 and p2, respectively. Then, Eq. (19) can be
rewritten as 
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The minimum of functional (20) is found from the nec-
essary condition of the extremum over q = (q1, …, qK):

(21)

To solve system of equations (21) with regard to the
parameter q, we turn to iteration methods. According to
the Newton iteration scheme, a correction to the current
approximation of q is determined as

(22)

where ∂2S/∂q2 is the Hessian matrix:

(23)

In Eq. (22), the initial approximation of q is usually
taken from the preliminary determination of the orbit
from several observations within the framework of a
two-body problem.

Because it is problematic to calculate the second
derivatives in Eq. (22), in practice, these are omitted and,
thus, we turn to a so-called Gauss–Newton method
which pertains to a wide class of quasi-Newton methods.

Let us introduce the matrix

(24)

Then, correction (22) can be rewritten as

∆q = –Q–1G, (25)
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where Q = ATA is the normal matrix which in the min-
imum S(q) at rather small discrepancies B is close to
the Hessian matrix, and G = –ATB is the gradient of the
function S over q.

In practice, we observe two angular object coordi-

nates: a right ascension  and a declination  In
this case, the distances between the observed and the
calculated positions in the coelosphere are computed
by the formula

while the following is considered as a functional of
(20):

(26)

TWO-BODY PROBLEM

To study the capabilities of the Gauss–Newton
method in detail, we first applied it to a simple model
based on two-body problem formulas. The model sim-
ulated the motion of the satellite Adrastea in the angular
coordinate space. As orbital parameters, we took the
components of the initial vector of the dynamic state
q = (x0, ), which were preliminarily obtained from
observations using the Laplace method (Escobal,
1965). Here, the parameters q corresponded to a nearly
circular orbit with the semimajor axis  = 8.68 ×
10−4 AU and the eccentricity  = 0.0161. Based on the
vector q, we modeled observed (accurate) positions of

pO =  (angular satellite coordinates) at the
moment of real observations (N = 90) almost identi-
cally distributed over the extremities of a 12-year inter-
val. The initial epoch t0 was taken in the middle of the
time interval.

Varying the a and e components and getting differ-
ent initial approximations of q0, we determined orbital
parameters q over pO according to (25) as applied to
(26). Thus, after numerous experiments, we discovered
that the iteration process is converged not at all values
of q0, and, even when it converges, the solution is not
always true. Hence, the domain of convergence to
expected components  and  is rather small. The rea-
son for the divergence of the iteration process (even at
good initial approximations of q0 providing for small
values of the target function) seems to be mainly con-
nected to the strong ravinity and the complex structure
of the hypersurface assigned by S(q).

However, the convergence can nearly always be
attained by decreasing the values of correction (25),
i.e., in accordance with the scheme

∆q = –hQ–1G, where h < 1. (27)
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Figure 7 gives the results obtained for h = 0.01.
Here, α is the relative deviation of the semimajor axis a
from the true value  i.e., a = (1 + α). The dots
denote the solutions to which the iteration process con-
verged at different initial variations of α and e (inside
the rectangle with the dashed line border). The numbers
to the left of the dots denote how many times the itera-
tion process converged to a corresponding solution,
while the numbers to the right represent the mean-

square error σ =  obtained in this solution. Here,
2000000 initial approximations were considered and
only 0.4% of them converged; the majority of them, in
turn, converge to solutions in the domain of variation of
the elements.

Thus, the problem considered also has a set of solu-
tions; however, among them, the absolute minimum is
given by the solution corresponding to the initial orbital
elements  and  Note that nearly all minima along
the axis α are uniformly distributed, the step being ∆α
≈ 9.23 × 10–5. It is easy to check that this distribution is
in good agreement with the estimates of (17) for even
m. The reason for the absence of minima for odd m lies
in the special selection of the initial epoch. Now, let us
return to Fig. 2. The lower plot shows that, in the case
of a circular problem with the initial epoch lying in the
middle of the time interval (as it is in our case), the
solutions that yield the criterion problem minima must
lie on the orbit at nearly diametrically opposed points.
Varying only the semimajor axis and the eccentricity,
we practically excluded those initial approximations
which could yield the minima corresponding to odd m
(17) in the opposite part of the orbit. At the same time,
the upper plot in Fig. 2 shows that the choice of the
epoch within one group localizes the minima, which is
naturally convenient for the search.

a, a

S/N ,

a e.

Furthermore, since we assume that the modeled
observations are free from errors, in the absolute mini-
mum, σ = 0. In neighboring minima, σ = 0.23″. Thus,
when there are random errors in the observations with
the dispersion on the order of a mean-square value, the
minimum of σ for the true orbit can be comparable with
the neighboring analogs to an extent that it will not be
recognized as the minimum corresponding to the true
orbit.

Having performed the procedure to determine the
orbit for different samples of the normally distributed
errors introduced into the modeled observations, we
compared the values of the minima for the true orbit
with those of one of the neighboring analogs. Figure 8
gives probabilistic densities P for the differences ∆σ in
cases of three dispersion errors s = 0.23″, 0.46″, and
0.67″. A positive difference means that the minimum
corresponding to the true orbit is smaller than the
neighboring one.
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Fig. 8. Probabilistic densities of the differences of minimal
∆σ values for different samplings of observation errors with
dispersions s = 0.23″, 0.46″, and 0.67″ (grey for N = 90;
white for N = 20).
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In particular, it is evident from the figure that, at
rather small errors (s = 0.23″), the differences ∆σ take
on positive values, where ∆σ = 0.02–0.03″ is the most
probable. Consequently, the parameters returning the
smallest minimum can be considered as the best esti-
mates of the true orbital parameters. In contrast to this
case, the two other values yield negative differences
whose occurrences are comparable with those for the
positive differences. This testifies to the fact that, by
comparing two neighboring minima, it is impossible to
reliably estimate the soundness of the parameters cor-
responding to them.

It is possible to determine the status of the neighbor-
ing minima if we have a great number of observations
(which are accurate enough). Otherwise, this undertak-
ing is unreliable. Figure 8 shows the results of the
experiments for 20 observation epochs (10 for each
group). It is evident that the majority of the differences
in all cases (N = 20) is concentrated at zero. Hence, the
probability of the occurrence of negative differences is
rather high.

As mentioned above, the convergence of the Gauss–
Newton iteration scheme can be attained if we intro-
duce into it a decreasing multiplier h (27). To get the
numerical results, in the previous section, we used h =
0.01. However, taking into account the low percent of
solution convergence (0.4%), we can assume that, to
yield a more consistent parametric estimation of q, by
minimizing the target function S, we should choose a
significantly smaller multiplier.

We estimated the convergence character and the rate
of the Gauss–Newton scheme with different h multipli-

ers using the example of two rather rough initial
approximations q01 and q02 corresponding to the
parameters α1 = –10–5, e1 = 0.1 and α2 = 10–5, e2 = 0.1.
The monitoring of the iteration process was performed
in the plane (α, e). The results are shown in Fig. 9.
Here, there is also a plot of isolines of S as functions of
α and e for true values of other orbital parameters.

In particular, it is evident from the figure that even
for h = 0.001 successive approximations with the initial
q01(α1, e1) are determined in a rather unpredictable way
although the iteration process converges. At the same
time, a significant decrease in the multiplier (h =
0.0001) both for q01 and q02 leads to a desirable relax-
ation series of approximations. Finally, it should be
noted that, at h = 0.01, the iteration process diverges in
both cases.

In spite of such a simple approach to the conver-
gence problem solution, it is unacceptable for deter-
mining the orbits of real inner satellites since, due to the
specific nature of the inverse problem, it is associated
with a very low convergence rate. Thus, when using a
scheme for the iteration process convergence with the
multiplier h = 0.001 (the coordinate accuracy being
10−10 AU), we had to carry out more than 10000 itera-
tions.

GRADIENT DESCENT AND PROJECTION 
METHOD

With the aim of attaining a rapid convergence of the
iteration process, it is possible to use other methods of
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calculating ∆q corrections together with the Gauss–
Newton method. In our case, it is enough to turn to the
well-known method of the gradient descent and the so-
called projection method (Himmelblau, 1972).

In the gradient descent method, the correction is cal-
culated as (Attetkov, et. al, 2001)

(28)

Here, the point denotes the inner product of the
K-dimensional vectors. During the process of the suc-
cessive use of scheme (28), the approximated solution
very quickly (during several iterations) falls down to
the bottom of ravine S, but later, extremely slowly
reduces to the minimum S. At this stage, one can use the
Gauss–Newton method. However, as practice shows, if
an approximated solution is very far from the minimum
S, scheme (25) will make corrections which are capable
of throwing the solution from the domain of the method
convergence. However, bad corrections can be
improved if we use a priori information on the proper-
ties of the orbital motion.

The gravitational field of the planet plays a domi-
nant role in the motion of Jupiterís inner satellites.
When modeling, this can be considered as conserva-
tive.

Thus, the total energy H(q) determined by the planet
attraction will be nearly constant. Taking this property
into account, let us impose a limitation on ∆q: a correc-
tion should meet the condition that H(q + ∆q) = H(q),
i.e., the approximate solution should remain at one
energy level.

For the general case, the imposed limitation deter-
mines many corrections; however, it is expedient to use
only an orthogonal projection of correction (25) onto
the surface H(q). Algorithmically, it is possible to make
the following iteration scheme:

(29)

where GH = ∂H/∂q is the gradient H over q, while ∆q0
is determined from (25).

As soon as the approximate solution becomes close
enough to the minimum, which is determined by the
smallness of ∆q0, we stop the minimization of S using
Gauss–Newton scheme (25).

A composite approach using iteration schemes (25),
(28), and (29) was also tested for initial approximations
of q01 and q02. The test results are given in Fig. 9 (com-
plex). The horizontal trajectories, here, correspond to
gradient descent (28), while the vertical trajectories
correspond to the Gauss–Newton method together with
projection scheme (29), where the Keplerian energy
was taken as H. Most noteworthy here is the fact that
only 27 iterations were needed to reach convergence for
the iteration process in both cases. 

∆q
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SATELLITE MOTION MODEL

A numerical model of satellite motion pC in the
angle coordinate space p = (p1, p2)] with regard to a
standard Earth equator J2000 can be formally repre-
sented as

pC = pC(t, qDT) = T(t, x(t, qD), qT). (30)

Here, t is the ephemeris time; qDT = (qD, qT) is the vec-
tor of all model parameters; T is the transformation of
the transition from a Jovian central frame to a topocen-
tric system; qD = (x0,  t0, q8, …) , and qT are the para-
metric vectors related to the satellite motion with regard
to a Jovian center and that with a coordinate transfor-
mation, respectively; x is the jovicentric position of the
satellite; and x0 and  are the vectors of the dynamic
satellite state at the initial moment t0.

Model (30) determines the position of x through the
numerical integration of the differential equations of
motion

(31)

with the initial conditions

(32)

which take into account the effect of the Jupiter gravi-
tational field PJ, the attraction from the Gallilean satel-
lites PG, from the Sun and planets PSP as well as the rel-
ativistic effects PR within the framework of the
Schwartzshield problem. The equations are integrated
using the Gauss–Everhart method (Everhart, 1974;
Avdyushev, 2006).

The coordinate transformation of T can be repre-
sented as the series of transformations

(33)

where Tgeo and Ttop are the transitions from the Jovian
center to the geocenter and from the geocenter to the
topocenter, respectively; and  are the obtained
angular coordinates with regard to the observer ( topo-
center). The transformation of the transition to the topo-
center Ttop � Tgeo can be formally written as

Ttop � Tgeo(x) = x + xJS – xES – xTE,

where xJS and xES are the geocentric positions of Jupiter
and the Earth, respectively, which are determined from
the ephemeris DE405 (Standish, 1998); xTE is the geo-
centric position of the observer calculated by its spher-
ical coordinates: the geocentric distance b, the latitude
ψE, and the local sidereal time s* as

xTE1 = bcosψEcoss*, xTE2 = bcosψEsins*,
xTE3 = bsinψE.

ẋ0,

ẋ0
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Ground-based observations of  =  are

usually related to the moments  of the Greenwich
mean time and, thus, when using numerical model (30),
it is necessary to preliminarily come to the ephemeris
time ti. In addition, to obtain visible satellite positions

 =  with regard to a ground observer, it is
also necessary to take into account the effect of the light

lag. Thus, we have the time transformationti =  + ∆ti,

where ∆ti is the correction of the corresponding  for
the ephemeris time and the light lag effect.

The components of the six-dimensional vector of
initial dynamic state q = (x0, ) (32) are the deter-
mined parameters (although, theoretically, it is possible
to jointly determine all components of the parametric
vector qDT). The parameters are found from the condi-
tion of the minimum of functional (26)

The above composite approach to the minimization
of S(q) using iteration schemes (25), (28), and (29) pre-
supposes the calculation of the derivatives ∂pC/∂q.
According to (30), they can be represented as

(34)

The derivatives ∂T/∂x in dynamic model (30) are
obtained analytically from differential correlations

while the derivatives ∂x/∂q are found numerically from
the differential equations in the variations

(35)

with the initial conditions

Here, T = (T1, T2); ρ is the topocentric distance of the
satellite; x = (x1, x2, x3); and E is the unitary matrix 3 × 3
in size. Equations (35) are numerically integrated
together with motion equation (31). Thus, during the
process of modeling, the system of the 42nd order is
integrated. Note that, in this section, we made use of
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model (30), where, however, the coordinates x and the
derivatives ∂x/∂q were calculated based on the two-
body problem formulas.

In the model, Jupiter was considered as a spheroid
whose attraction was taken into account with an accu-
racy up to the sixth zonal harmonic. Formally, the
planet attraction can be represented as

µ is the gravitational planet parameter; Ji are the coeffi-
cients of zonal harmonics, for which J0 = –1; bJ is the
equatorial Jupiter radius; Li are Legandre polynomials;
and ψJ and xJ3 are the latitude and the applicate of the
satellite with regard to the planet equator, respectively.
The applicate xJ3 is determined from the coordinate
transformation xJ = TJx (Seidelmann, et al., 2002),
where TJ is the matrix of the transition from the
geoequator to the Jovian equator.

Due to the small dimensions of the gravitating bod-
ies such as Galilean satellites, the Sun, and the planets
(except Jupiter) as compared to their distances from
inner satellites, they are considered material particles
and the attraction of each body in PG and PSP (31) was
calculated by the formula

where µi and xi are the gravitational parameter and the
jovicentric vector of the ith body position. The coordi-
nates of the Galilean satellites were calculated using
Lainey theory L1 (Lainey et. al., 2004a; Lainey et.al.,
2004b), while the coordinates of the Sun and the plan-
ets were computed from the DE405 ephemeris. To opti-
mize the calculations, the orbital parameters of the
inner satellites were preliminarily determined using a
simplified theory of Galilean satellites, where their
positions were calculated using circular motion formu-
las using the constants from Lieske (1998). Such a
stage-by-stage approach allowed for an increase in the
speed of the numerical parameter determination by
nearly 15 times.

The constants of the Jupiter gravitational field as
well as the masses of the Galilean satellites were taken
from the Lieske theory E5, while the masses of extrane-
ous planets were taken from DE405.

The relativistic effects were determined within the
framework of the Schwartzshield problem using the
formula (Brumberg, 1972)
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where c is the speed of light.

Figure 10 shows the effect of the disturbing factors
on the Almathea orbital motion. The results represented
in the figure were obtained through the numerical eval-
uation of the secular errors in the mean longitude by
ignoring these or the above disturbing forces. The
results show that the effects of the two first even har-
monics of the Jupiter gravitational field (J2, J4) as well
as those from the attraction of the most inner Galilean
satellite Io (G1) are the most weighty. In particular,
already after a ten-year period, the rapid variable per-
turbation from Jupiterís oblateness becomes on the
order of one revolution. The perturbations from the
Galilean satellites (G2, G3, G4) decrease with distance
from the planet. The effects of the attraction of the Sun
and the farthest Galilean satellite Callisto (G4) as well
as that of the relativistic effects (Rltvty) are on the same
order. The contribution of the perturbations caused by
extraneous planets in Amaltheaís motion is the least.
Their effect turned out to be so negligible that we
decided to completely exclude them from equations
(31). In addition, the figure provides the estimates of
the perturbations due to the numerical integration errors
(IntErr) and the simplification of the orbital model of
the Galilean satellites up to a circular one (CircG). It is
evident that the influence of the integration errors, as is
assumed, is much weaker than the perturbations taken
into account. At the same time, the evaluation of CircG
shows that the error due to the simplification of the
orbital model of giant satellites is so large that the
model is totally inadmissible for use in the final pro-
cessing of observations on inner satellites.

SATELLITE OBSERVATIONS

To determine the orbital satellite parameters, the
ground-based observations, whose chronology is given
in Table 1, were mainly used. Figure 11 plots the den-
sity of the time distribution of the satellite observations.
Here, each group of observations is marked with the
corresponding code of the observatory (see Table 1); t0
is the initial point of time at which the orbital parame-
ters were estimated.

It is evident that Amalthea (N = 707) and Thebe (N =
465) have numerous and sufficient dense observational
series. Moreover, the Amalthea observations cover a
rather long time interval on the order of 50 years. It
should be noted that the majority of all observations for
these satellites was obtained at the Itajuba Observatory
(Viega, Vieira Martins, 2005) between 1995–2001. In
addition, there are several observations from the Hub-
ble Space Telescope (Mallama et al., 2004). All obser-
vations made before 1978 are photographic, while later
observations were obtained using CCD receivers, and
they are represented either in absolute coordinates (p1,
p2) (A) or in relative coordinates (∆p1cosp2, ∆p2),
where either Jupiter (J) or one of the Galilean satellites
(G) serve as the reference objects.

The amount of observation data on the satellites
Adrastea (N = 90) and Methis (N = 178) are substan-
tially smaller. All of the data were obtained using CCD
receivers at two observatories (675 Palomar Mountain
and B18 Pik Terskol) and are represented arcsec to
Jupiter, the Galilean satellites as well as Amalthea and
Thebe (I).

All observation data were taken from the Natural Satel-
lites Data Center Service database http://www.sai.msu.ru/
neb/nss/nssnsdcmr.htm (Emelyanov et.al., 2006). Detailed
information on the observations used can be found in the
papers (Van Biesbroeck, 1955; Sudbury, 1969; Mulholland
et.al.,1979; Ianna et.al., 1979; Nicholson, Matthews, 1991;
Mulholland et.al., 1979; Viega, Vieira Martins, 1996; Viega,
Vieira Martins, 2005; Ledovskaya et.al., 1999; Kulyk et.al.,
2002).

To process the relative observations, the coordinates
of the reference objects Jupiter and the Galilean satel-
lites were determined from ephemeris DE405 and L1,
respectively, while the coordinates of the inner satel-
lites Amalthea and Thebe were calculated using our
numerical model (30) based on the parameters obtained
using the above observational data.

Due to the small number of satellite observation
groups, the problem of the ambiguous determination of
the orbital parameters of Adrastea and Metis can occur.
Figure 12 plots the functions Φ for each satellite, for-
mally calculated for each observational time. Since the
functions Φ are even, they are presented only for ζ ≥ 0.

In particular, it is seen that, for Adrastea and Metis,
there exist minima of Φ similar in magnitude to the triv-
ial one ζ = 0. This discredits the criterion of the deter-
mined parameter quality over the smallness of the tar-
get function S, while, as we already know, in the pres-
ence of observational errors, the best parameters (those
which are the closest to the true ones) do not always
return the absolute minimum of the target function, par-
ticularly in the case when observations are not numer-
ous. For Metis, there are two such minima: ζ/2π ≈ ±11,
while, for Adrastea, many eixst. At the same time, the
problem of the ambiguous determination of the orbits is
unlikely to occur for Amalthea and Thebe since all
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(nontrivial) minima drastically differ from the trivial
one.

Finally, note that the minima Φ for Adrastea
increase away from the trivial minimum, although it
was shown earlier that, in the case of two observational
groups, all minima are equipollent (Fig. 3). This dis-
crepancy is, in reality, explained by the fact that all
epochs of the second group of observations (B18 Ter-
skol, Table 1) are distributed over a significant time
interval whose duration should not be neglected during
careful analysis.

DETERMINATION OF ORBITAL PARAMETERS

Initial estimates of orbital parameters q0 were pre-
liminarily obtained from observations using the

Laplace method. Initial time moments t0 versus the
observational times are given in Fig. 11. In spite of the
fact that the fewest stipulations of normal matrices Q
are reached when t0 is chosen within the interval of
moments t0 for Adrastea and Metis were deliberately
left inside the end groups (675 Palomar Mountain),
where the observations of the latter are used for obtain-
ing initial estimates of q0. As indicated earlier using the
example of the circular problem, this very choice is
convenient for seeking the minima of the target func-
tion S in the case of observation groups since the solu-
tions of q returning the minimum S are close to one
another in the phase space of the estimated parameters
(Fig. 2).

Using a composite approach with iteration schemes
(25), (26), and (29) to minimize S(q) and proceeding

Table 1.  Time distribution of the satellite observations

N Type Interval (day, month, year–day, month, year) Observatory

Amalthea

41 Photo A 14.02.1954–22.02.1954 711 McDonald 

90 Photo A 11.01.1967–07.02.1967 88 Kottomia 

20 Photo A 29.09.1976–09.12.1977 711 McDonald 

2 Photo A 17.12.1977 780 Linder MaCormick 

10 Photo A 07.01.1978–09.01.1978 711 McDonald 

16 CCD J 03.12.1988 675 Palomar Mountain

8 CCD J 15.007.1994–25.08.1994 250 Hubble Space Telescope 

203 CCD A 23.05.1995–14.09.1995 874 Itajuba 

2 CCD J 15.05.1996 250 Hubble Space Telescope 

63 CCD A 21.06.1996–23.08.1996 874 Itajuba

64 CCD G 26.09.1998–20.11.2000 B18 Pik Treskil 

188 CCD A 25.10.2001–27.10.2001 874 Itajuba 

Thebe

193 CCD A 23.05.1995–23.08.1996 874 Itajuba 

84 CCD G 19.09.1998–02.11.1999 B18 Pik Treskil  

188 CCD A 25.10.2001–27.10.2001 874 Itajuba 

Adrsathea

48 CCD J 03.12.1988 675 Palomar Mountain 

42 CCD I 05.11.2000–21.11.2000 B18 Pik Treskil 

Metis

50 CCD J 03.12.1988 675 Palomar Mountain 

128 CCD G, I 08.10.1999–20.11.2000 B18 Pik Tresko 
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from initial approximations q0, over only tens of itera-
tions, we obtained the estimates of orbital parameters
q = (x0, ) which are given in Table 2. The corre-
sponding orbital elements in their truncated form are
given in Table 3. Here, i is the inclination (referred to as
the Jupiter equator), τ is the orbital period, and σa is the
satellite elongation.

The process of fitting a parameter made use of
scheme (25) (a gradient descent) until the mean-square
error σ converged with an accuracy of up to 0.001″,
and, then, scheme (29) (the Gauss–Newton method)
was applied. If the corrections in the coordinates ∆x
exceeded 10–7 AU, the solution q was corrected for its
deviation from the energy surface in accordance with
scheme (28) (a projection method). Thus, the process
continued until all coordinate values reached 10–10 AU.
All of the limiting values used as a criterion for choos-
ing a specific scheme were selected experimentally.
Finally, it should be noted that a well-known Gaussian
elimination method was used for the normal matrix
inversion in scheme (25).

The obtained parameter estimates return mean-

square errors σ =  not exceeding 0.4″ (Table 4),
which points to a good agreement with the external
accuracy of the ground-based observations (Fig. 4 also
gives the condition numbers of normal matrices condQ
and time intervals ∆t and ∆E covering observational
times in years and satellite turns, respectively). Dis-
crepancies ∆p1cosp2 and ∆p2 determining the values of
errors σ are given in Figs. 13–16. It should be men-
tioned that, during the process of parameter determina-
tion, some observations whose discrepancy values
exceeded 3σ were rejected. Thus, several dozens of
such observations were eliminated from the database.

It has already been noted that, to increase the effi-
ciency of the calculations, the orbital parameters were
estimated in two stages: first, with a simplified circular
model of the Galilean satellites and, then, using the
high-accuracy Lainey L1 theory. It is notable, in this
connection, that, at both stages, we found nearly the
same mean-square errors although the parameters to be
determined were principally different. This is because
the roughening of the Galilean satellite models within a
dynamic model of inner satellites leads mainly to a sec-
ular error in the latitude λ* that actually results in a shift
of the target function S along the parameters directly
associated with the frequency of the inner satellite rev-
olution, with the minimum values of S being preserved.
This has been shown above using the example of a cir-
cular problem.

In the result of determining the orbital parameters,
we also obtained their covariance matrices C = σ2Q–1,
which are known to describe parametric error distribu-
tions. From the practical point of view, the matrices C
can conveniently be represented as

C = σ2WTVW,

ẋ0

S/N

Table 2.  Estimates of the orbital satellite parameters

x0, Au  AU per day

Amalthea (t0 = 2449860.5 JD)

5.904259045649335 × 10–4 1.335508654469120 × 10–2 

–9.649762725788387 × 10–4 6.580573675959994 × 10–3 

–4.443404841108547 ×10–4 3.311479208243125 × 10–3 

Thebe (t0 = 2450464.5 JD) 

–6.267081178161467 × 10–4 1.233321360075275 × 10–2 

–1.230794598107236 × 10–3 –5.441693601047646 × 10–3 

–5.898550029039168 × 10–4 –2.105071658282438 × 10–3 

 Adrastea (t0 = 2447498.5 JD) 

–7.303981301488080 × 10–4 9.634657321571694 × 10–3 

–4.031887607701157 × 10–4 –1.410217512755373 × 10–2 

–1.986950951223992 × 10–4 –6.455413514235597 × 10–3 

 Metis (t0 = 2447498.5 JD) 

1.859819984557366 × 10–4 –1.780689855999936 × 10–2 

7.521256414899649 × 10–4 3.659703433891211 × 10–3 

3.622658670920554 × 10–4 1.474969016967715 × 10–3 

ẋ0,

Table 3.  Osculating orbital elements of the satellites

Satellite a × 103, 
AU e i, degrees τ, days σa, 

ang. vel 

Amalthea 1.2165 0.0036 0.3063 0.5016 59.7 

Thebe 1.4866 0.0145 1.1248 0.6776 73.8 

Adrastea 0.8682 0.0129 0.4613 0.3024 42.1 

Metis 0.8615 0.0074 0.0621 0.2989 42.0 

Table 4.  Statistical data

Satellite σ, 
arcsec N ∆t, 

years 
∆E, 

turns  

Amalthea 0.284 707 47.7 34731 12.9 

Thebe 0.161 465 6.4 3467 11.1 

Adrastea 0.386 90 12.0 14453 13.1 

Metis 0.333 178 12.0 14620 13.5 

cond Qlog
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where W and V are orthogonal and diagonal square
matrices, consisting of the directional cosines of the
eigenvectors of a normal matrix Q and its proper
inverse eigenvalues, respectively, which are given in a
truncated form in Tables 5 and 6. In particular, as
Table 6 shows, a normal matrix (like covariant ones)
have greater condition numbers (see also Table 4). This
is attributed, first of all, to the fact that the observed data
are distributed over long enough time intervals com-
pared to orbital satellite periods τ (Table 3). A connec-
tion between the conditionality and the length of the
time interval has, in fact, been demonstrated by the
example of a circular two-parameter problem, where
the matrix determining quadratic form (13) served as a
normal matrix:

Comparing formulas (14) and (15), we see that the con-
ditionality of Q directly depends of the sum of qua-
dratic deviations on the observational times from the
initial epoch. Thus, the best conditionality is reached
when choosing an arithmetic mean value for all obser-
vational times as the initial epoch.

The ill conditionality of a normal matrix is also
known to unfavorably affect its revolution accuracy
(mainly due to the strong rounding up errors) and, as a
result, the convergence of the Gauss–Newton iteration
scheme. Nevertheless, in our case, the conditional num-
bers turn out not to be large enough to significantly
affect the quality of the normal matrix inversion.

OTHER ESTIMATES

In spite of the smallness of the mean-square errors
for Adrastea and Metis (Table 4), other minima of the
functional S exist, where the errors take on close values.
(Like below, weíll consider a set of different solutions
returning minima of S; for the sake of convenience, all
of the variables related to the above estimates of the
orbital parameters will be marked with a tilde). To find
these minima, in accordance with (17), we varied the
values of the total energy H with the step ∆H =

2 /3 ; then, according to scheme (29), we found

Q
κ11 κ12

κ12 κ22⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

H̃ R̃,

Table 5.  Matrices of W for different satellites

Amalthea

0.8271 0.5494 –0.0916 0.0468 – 0.0526 –0.0278 

–0.4842 0.7915 0.3644 –0.0694 –0.0342 –0.0172 

0.2724 –0.2593 0.9261 0.0161 –0.0251 0.0037 

–0.0373 0.0623 0.0287 0.7777 0.5536 0.2875 

0.0766 0.0239 0.0131 –0.6218 0.7156 0.3077 

0.0009 0.0051 –0.0133 –0.0355 –0.4206 0.9064 

Thebe

0.8998 –0.3920 –0.1250 –0.0152 –0.1296 –0.0635 

0.4149 0.8147 0.3904 –0.0977 0.0431 0.0167 

–0.0514 –0.4110 0.9101 –0.0051 0.0099 –0.0025 

–0.0170 0.1107 0.0588 0.8271 –0.5157 –0.1845 

0.1236 –0.0369 –0.0136 0.5507 0.7380 0.3678 

0.0016 –0.0061 0.0041 –0.0542 –0.4131 0.9090 

Adrastea 

0.8507 0.4697 0.2313 –0.0249 0.0364 0.0167 

–0.5225 0.7958 0.3022 0.0304 0.0350 0.0147 

–0.0422 –0.3788 0.9245 0.0012 0.0037 –0.0083 

0.0396 0.0094 0.0049 0.9078 –0.3958 –0.1322 

0.0026 –0.0495 –0.0211 0.4172 0.8473 0.3243

–0.0026 –0.0058 0.0073 –0.0163 –0.3505 0.9364 

Metis 

0.9750 –0.2004 –0.0846 –0.0105 –0.0386 –0.0210 

0.2172 0.8784 0.4231 –0.0457 0.0094 0.0038 

–0.0106 –0.4320 0.9018 –0.0037 –0.0008 0.0039 

0.0073 0.0294 0.0141 0.6769 –0.4841 0.5534 

0.0448 –0.0056 –0.0018 0.3001 0.8684 0.3922 

–0.0026 –0.0272 –0.0191 –0.6704 –0.1001 0.7345 

Table 6.  Components of the diagonal matrices V (proper numbers Q–1)

Satellite v1 v2 v3 v4 v5 v6 

Amalthea 5.259 × 10–2 5.709 × 10–12 5.008 × 10–2 6.595 48.56 12.23 

Thebe 4.237 × 10–2 4.61 × 10–10 9.838 × 10–2 7.339 47.96 8.202 

Adrastea 9.023 × 10–11 0.183  0.505 1092 483.5 167.7 

Metis 0.128 1.823 × 10–11 0.222 76.81 511.8 79.14 
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Fig. 15. Model discrepancy for Adrastea.

approximate values of the parameters q0 and, finally,
using each q0 approximation, we performed the param-
eter improvement procedure described above. In total,
50 neighboring solutions were analyzed for Adradthea,
while, for Metis, we considered only the two corre-

sponding to the minima ζ/2π ≈ ±11 of the function Φ(ζ)
(Fig. 12).

It is particularly remarkable that, for Adrastea, the
absolute minimum of the mean-square error is reached
just at the solution  (Table 2). However, other minimaq̃
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close to σ exist in its neighborhood whose values differ
from  by less than 0.01″ (Fig. 17). Thus, we have suf-
ficient evidence to suspect that the best (in terms of
being the closest to the true parameters) estimates can,
with a high degree of probability, be found in the neigh-
boring minima.

Needless to say, there is a temptation to attract some
additional a priori information on the satellite orbits to
single out the best estimates from among those pre-
sented. For example, taking into account that the satel-
lite orbits are nearly circular or equatorial, we can
chose from all q those which correspond to the least
eccentricity or inclination. However, as has been shown
using the example of a two-body problem (Fig. 7),
rather good orbital elements from the a priori point of
view can be given by estimates, which are far from the
true parameters.

Figures 18–20 show the distribution of solutions in
the orbital components along H. The initial solution of

 given in Table 2 is marked in the figures with a ring.
In particular, if we compare Figs. 17 and 19, we can see
that the least eccentricity (e = 8 × 10–4) corresponds to
the mean-square error (σ = 0.87″), which is far from

σ̃

q̃

being the best. However, the same situation is observed
for the inclination (i = 0.18°, σ = 0.64″) (Fig. 20).

As for Metis, the results of the investigation of two
suspicious solutions once and for all destroyed all
doubts concerning their belonging to potentially
acceptable solutions for the description of a satellite
orbit: the data in Table 7 show that mean-square error
of adjacent solutions is significantly larger than the
error of the initially obtained solution  (Table 4). In
addition, it is worth noting that both the eccentricity
and the inclination for  take on the lowest values
(Table 3).

Taking advantage of the fact that we have three
observation groups for Metis (Fig. 11), we carried out a
very interesting experiment whose results vividly dem-
onstrate the importance of the problem of ambiguous
orbit determinations in the view of planning future sat-
ellite observations. We determined the orbital parame-
ters based on two observation groups (675 Palomar
Mountain, B18 Pik Terskol) between 1988ó1999, and,
then, to forecast satellite positions at the observational
times of the third group.
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Fig. 16. Model discrepancy for Metis.
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Using the data of two groups, we can find a set of
solutions for q that minimize the target function S; but,
we considered only the three adjacent to ζ/2π = –1, 0, 1
(a zero solution corresponds to ). The orbital compo-
nents for these solutions are given in Table 8. It should
be noted that minimal mean-square errors σ takes place
for ζ/2π = 1, although, as we know from the results of
the orbit determination based on three observational
groups, the best parameter estimate is for ζ/2π = 0.

The coelosphere positions of the satellite (C) mod-
eled on the basis of two adjacent solutions for the third
group of observations (O) are given in Fig. 21. It is
clearly seen that a numerical forecast of the satellite
elongation is rather rough. Thus, using a dynamical
model of the object to plan its observations at any other
precalculated elongation moment, not only will we be
unable to find it at an expected location, we may not be
able to observe it at all because it is likely to be in front
of Jupiter, behind it, or nearby it blinded out by light

q̃

coming from the planet.  Other adjacent solutions will
evidently give a rougher forecast.

COMPARISON WITH JUP230 EPHEMERIS 

Simulation results were compared with JUP230
ephemeris (Jacobson, 1994), which are available at the
website of the Jet Propulsion Laboratory (JPL NASA):
http://ssd.jpl.nasa.gov/horizons.cgi. Using JUP230
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Fig. 19. Eccentricity values for different solutions (Adrastea).
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Table 7.  Orbital elements of Metis and the mean-square er-
rors for adjacent solutions

ζ/2π a × 103, AU e i, degrees τ, days σ, arcsec 

–11 0.8618 0.0120 0.2002 0.2991 0.987 

11 0.8609 0.0101 0.2325 0.2986 1.119 
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ephemeris, in the 20-year time interval from 1980 to
2000, we generated the observations of inner satellites
with a 30-day interval. Based on these observations, we
estimated a mean-square error σ of our model with 
parameters (Table 2) and, then, fitted those parameters
to the observations generated. The results are given in
Table 9. Here, the index jac denotes the values obtained
in the result of the numerical model adjustment to
JUP230 ephemeris.

It should be immediately noted that the solution of
 for Adrastea showed a poor agreement with JUP230.

We checked the adjacent solutions and it turned out that
JUP230 ephemeris is in good agreement with the solu-
tion corresponding to ζ/2π = –1. The table shows the
estimates for this very solution. Hence, we would not
hurry to state that this solution is the best estimate of the
orbital parameters.

As far as we know, not only ground-based observa-
tions but also spacecraft observations were used for
constructing JUP230 ephemeris. Thus, there should
seemingly be no peculiarities associated with the ambi-
guity of the orbital determination when constructing
the ephemeris. Nevertheless, we cannot say it with cer-
tainty until this problem is given a thorough consider-
ation.

Thus, coming back to Table 9, we see that our results
for Amalthea are in very good agreement with the
NASA ephemeris, while those for other satellites are a
bit worse. This is explained by the fact that, for a satel-
lite known for many years, the number of observation
data covering a longer time interval is larger than that
for satellites discovered only in 1979. An increase in the
time interval of uniformly precise observations is
known to decrease the degree of uncertainty in the
parameters estimated based on observations. Neverthe-

q̃

q̃

less, in spite of the large mean-square errors for Thebe,
Adrastea, and Metis, they remain within the external
accuracy of the ground-based observations.

After the model was adjusted to JUP230 ephemeris,
we found sufficient small mean-square values of σjac on
the order of 0.04″ (Table 9) probably due to the fact that
they are associated with the absence of short-period
perturbations as the positions of satellites in JUP230
are calculated using the formulas of the precessing
ellipsis (Jacobson, 1994). Hence, the satellite periods
did not change significantly, which cannot be said about
the eccentricities and inclinations, especially for
Adrastea and Metis; the values of these components
decreased. However, the above does not give us
grounds to make any conclusions on the quality of
NASA ephemeris, since the model underlying it is prin-
cipally different from ours. 

CONCLUSIONS

To conclude, let us summarize the key results of this
work.

1. The problem of the ambiguous orbit determina-
tion that frequently occurs in the inverse problems of
the inner satellite dynamics when their orbits are deter-
mined based on several observation groups distributed
over rather long time intervals has been formulated.

2. The problem of the ambiguity in orbit determina-
tion has been studied in detail by the example of a two-
body circular problem. In particular, the unpleasant
peculiarity considered in inverse problems is shown to
become most relevant when two groups of observations
are distributed at the extremities of the time interval;
under these circumstances, the target function has a set
of nearly equipollent minima and the choice for the best
solutions from among those where the minima are
reached becomes practically impossible, in particular,
when there are very few observations containing large
errors. The problem can occur at a so-called resonant
distribution of the observational groups, this being one
of the favorable conditions for the appearance of nearly
equipollent target function minima.

3. The characteristic Φ graphically demonstrating
the approximate distributions of the target function
minima along the parameter directly linked with the
frequency of the satellite revolution has been intro-
duced. This characteristic is convenient for studying
inverse problems with the object of finding a set of
solutions.

4. Using the example of a circular problem, the
ravine shape of a minimized function (the conditional-
ity of the matrix of an approximate quadratic form) has
been shown to directly depend of the sum of the qua-
dratic deviations of observational times with regard to
the initial epoch. This implies that the lowest degree of
ravinity (the best conditionality) is reached when a nor-
mal value of all observational times is chosen as the ini-
tial epoch.

Table 8.  Orbital elements of Metis and mean-square errors for
adjacent solutions for the case of two observational groups

ζ/2π a × 103, AU e i, degrees τ, days σ, ang. vel 

–1 0.8615 0.0069 0.1933 0.2990 0.280 

0 0.8615 0.0100 0.1682 0.2990 0.257 

1 0.8615 0.0132 0.1488 0.2990 0.245 

Table 9.  Mean-square deviations of the ephemeris and os-
culating orbital elements of satellites obtained for JUP230

Satellite σ, arc-
sec 

σjac, 
ang.vel.

ajac × 
× 103, 
AU

ejac 
ijac, de-
grees 

τjac, 
days 

Amalthea 0.076 0.035 1.2165 0.0036 0.3817 0.5016 

Thebe 0.217 0.037 1.4865 0.0160 1.0845 0.6776 

Adrastea 0.272 0.036 0.8681 0.0065 0.0096 0.3024 

Metis 0.168 0.039 0.8615 0.0071 0.0043 0.2989 
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5. The capabilities of the Gauss–Newton method as
applied to the dynamic model based on two-body prob-
lem formulas have been studied. Numerous experi-
ments have shown that the method has a low efficiency
for the considered inverse problems. In particular, the
convergence domain of the iteration Gauss–Newton
scheme is so small that, from the applied point of view,
it is absolutely useless to use this scheme. In this con-
nection, we have suggested a composite approach to the
orbital parameter determination, which would allow
one to quickly find the target function minimum even
when the initial approximations are rather rough. This
approach assumes the use of thewell-known gradient
descent method and the so-called projection method to
modify the Gauss–Newton scheme.

6. A numerical model of the inner satellite orbital
motions taking into account the key disturbing factors
such as the nonspherical character of the Jupiter gravi-
tational field (up to the sixth zonal harmonic), the
attraction of the Galilean satellites, the Sun, and extra-
neous planets as well as the relativistic effects within
the framework of the Schwatzshield problem, has been
constructed.

7. Based on the available observational data on the
satellites (Amalthea, Thebe, Adrastea, and Metis), their
orbital parameters as well as the corresponding covari-
ance matrices which characterize the distribution of the
parametric errors have been obtained.

8. Adjacent estimates of the Adrastea and Metis
orbital parameters have been studied in the view of their
belonging to those which are potentially acceptable for
describing the satellite orbits. Due to the fact that
Adrastea has two observational groups, it turns out to
be impossible to get reliable estimates of the orbital sat-
ellite parameters. At the same time, in spite of the fact
that Metis has also been observed infrequently, we have
no doubts that initially obtained estimates of the orbital
parameters are best and can be recommended for the
numeric modeling of the satellite orbit.

We note, finally, that all of the theoretical results
obtained in this paper can be generalized for any satel-
lite system. For example, the problem of the ambiguous
determination of the orbits will, at least, take place
when a set of solutions along the parameter associated
with the satellite revolution frequency are within the
area of its legitimate values. If the semimajor axis a is
taken as such a parameter, and δa = aσ/σa is the limiting
variation, then, in accordance with (17), for two obser-
vational groups, a set of solutions can be obtained, if

where R is the number of satellite revolutions which
keep within the time interval specified by the observa-
tions, σa is the satellite elongation, and σ is a typical
value for the observational errors.

R
3
2
---

σa

σ
-----,>
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