
 1977

 
Russian Physics Journal, Vol. 63, No. 11, March, 2021 (Russian Original No. 11, November, 2020)  

NEW COLLOCATION INTEGRATOR FOR SOLVING DYNAMIC 

PROBLEMS. I. THEORETICAL BACKGROUND 

V. A. Avdyushev  UDC 519.62:531 

A new collocation integrator with Lobatto spacings is proposed for numerical solving mixed systems of first- 
and second-order differential equations for dynamic problems. The general theory of collocation integrators is 
outlined from which the basic formulas of the new integrator are derived. 
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INTRODUCTION 

Collocation integrators [1–4] are simple, graceful, convenient, and at the same time powerful tools for solving 
differential equations of dynamics. The idea of the collocation integrators is rather transparent, and knowledge of other 
integrators [3], for example, Runge–Kutta, Gragg–Bulirsh–Shtoer, or Adams integrators are not required to understand 
it. It is suffice to know only what are differential equations, integration, and interpolation. Therefore, it is well justified 
to consider the collocation integrators as a whole as an independent class, the most known representatives of which are 
the implicit Runge–Kutta collocation integrators. 

A remarkable feature of the collocation integrators is that their theoretical basis, as well as software 
implementation, is universal for an arbitrary order [5]. Practically, the order is defined by spacing within a step, namely, 
by the number and specificity of distribution of nodal values in terms of which all other integrator constants are 
expressed. In addition, with Gaussian Legendre or Lobatto quadrature spacings, the collocation integrators become 
geometrical [4]: symmetric and orbitally stable,1 and with Legendre spacings, also symplectic. It should also be noted 
that, unlike others, the collocation integrators allow one to design easily within each step an approximate analytical 
solution, which is convenient to use for obtaining results on a dense time grid. 

In the present work, a new collocation integrator Lobbie is proposed with Lobatto spacings. Actually, its 
prototype is the Everhart integrator widely used in dynamical astronomy [6, 7]. More precisely, it is the result of 
cardinal revision of the predecessor, although the theory, algorithmization, and program code of the new integrator can 
only conceptually remind of the author’s version of the glorified Everhart integrator. 

The general theory of collocation integrators with application to solving the differential equations of the first 
and second orders is briefly outlined. Particular examples, including the Everhart integrator, are given followed by the 
derivation of the main formulas for the integrator Lobbie and the special features of their software implementation. The 
procedure Lobbie is described.  

 

1 This definition with reference to the Runge–Kutta method was introduced in [5]. 
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1. COLLOCATION METHODS 

1.1. First-order differential equations 

Let a dynamic state x  be described as a function of time t  by the first-order vector differential equation 

 ( , )t x f x  (1) 

with the known initial dynamic state at time 0t : 

 0 0( )tx x . (2) 

Here the prime designates the full time derivative and f  is the known vector function of time and dynamic state. It is 

required to determine the dynamic state of the system at time 0t h : 

 0( )t hx , (3) 

where h  is a small parameter (size of the integration step). 
We represent the approximate solution of Eq. (1) in the form of a polynomial 

 ( ) ( )t tu x , (4) 

which must precisely satisfy to the equation at some intermediate moments of time 0 0[ , ]it t t h  ( 1, , )i s   (at 

collocation points) 

 ( ) ( , ( )) ( 1, , )i i it t t i s  u f u  , (5) 

and to initial condition (2) 

 0 0( )tx u . (6) 

Then solution (3), with allowance for (4), is approximately determined as 

 1 0 0( ) ( )t h t h   x u x . (7) 

The geometric sense of (5) is that the tangents to the polynomial at the collocation points must coincide 
(collocate) with the directions of the vector field generated by the function of the differential equation f  (Fig. 1). 

Though the values of the polynomial can differ considerably from the exact solution.  
Collocation conditions (5) can be considered as the Lagrange conditions imposed on the derivative of 

polynomial (4): 

 0( ) ( )t h    u p , (8) 

which in this case plays the role of the polynomial interpolant of the function f  with respect to the dimensionless 

variable  . According to (5), the Lagrange conditions for the nodal values 1, , sc c  of the dimensionless variable   

can be represented in the form 

 0( ) ( , ), ( ), ( 1, , )i i i i i i i ic t t t t hc i s     p f f u u u  . (9) 
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Forming the polynomial interpolant p  from conditions (9), then integrating relation (8) over   on the segment 

[0,1] , and taking into account (6) and (7):  
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we obtain the approximate solution 

 
1

1 0 0
( )dh   x x p .  

The interpolant p  (8) is constructed from the intermediate approximate solutions 1, , su u  (9), that is, 

1( , , , )s p p u u . Each i th solution is also determined by integrating (8) over  , but on the segment [0, ]ic . Thus, 

the collocation method of solving differential equation (1) can be represented by the set of formulas 

 
1

1 0 1 0 10 0
( , , , )d , ( , , , )d ( 1, , )ic

s i sh h i s         x x p u u u x p u u   . (10) 

The intermediate solutions in (10) are implicitly expressed through the nonlinear equations. For this reason, all 
collocation methods are implicit.2 As a rule, the equations are solved by the fixed-point iteration in the Seidel 
modifications, that is, refining one by one the intermediate solutions at each iteration step. In fact, the iterative solution 
of nonlinear equations is the kernel of any collocation integrator, and its efficiency depends in many respects on how 
successfully organized is the iterative process. 

The order p  of the method is determined by the number s  of collocation points and the specificity of their 

distribution. The collocation principle allows one to obtain practically any order. So, for any arbitrary distribution 

                                                           
 
2 Except the explicit Euler method (of the first order) which is the collocation method with the Radau I spacings 

for 1s  . 

 

Fig. 1. Collocation conditions for the differential equation ( , ) sin(2 )x f t x t x     with 

the initial condition 0 (0) 1x x  . The arrows indicate directions of the vector field 

(cos ,sin )   at points ( , )t x , where tan ( , )f t x  . The black solid curve shows the 

collocation polynomial u  (the approximated solution) with the Lobatto spacings (filled 

circles) for 6s  ; the dashed curve shows the exact solution (1 cos(2 )) 2tx e    ; the 
collocation points for planes ( , )t x  are indicated by open circles. 
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1, , sc c  (for example, uniform) at least p s  [3]. However, using the nodal values of the Gaussian Legendre, Radau, 

or Lobatto quadratures, the order can be increased to 2p s , 2 1p s  , and 2 2p s  , respectively [3, 4, 8, 9]. 

These nodal values are solutions of the algebraic equations 
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 (11) 

The collocation methods are remarkable in that, in fact, they give the analytical solution within the step in the 
form of the collocation polynomial 

 0 0
( ) ( )dh

    u x p  

(not only the solution 1x  at the end of the step and several intermediate solutions 1, , su u ), which is very convenient 

for derivation of approximate solutions for a dense time grid. However, it should be borne in mind that the order of 
accuracy within the step is reduced to p s  [3]. In addition, the presence of the interpolant allows one to obtain 

a sufficiently good initial approximation of the function f  at the next step by extrapolation:  

 (1 ) ( 1, , )i ic i s  f p   

for the subsequent iterative determination of intermediate solutions (10). 
It should especially be noted that the collocation methods with the Legendre and Lobatto spacings become 

geometrical [4]: symmetric and orbitally stable, and the Legendre spacing, also symplectic. It seems that the Legendre 
spacing is more preferable, because with the same number of collocation points, its order is higher by 2. However, in 
spite of the fact that the order of the method with the Lobatto spacings is lower, it works a little faster. Indeed, at each 
step with ni  iterations for determining intermediate solutions, the number of calculations of the equation function is 
equal to ( 1)ncf ni s   , whereas with the Legendre spacings, ncf ni s  . In addition, the interpolant of the 

equation function is constructed for the entire integration segment 0 0[ , ]t t h  with 1 0c   and 1sc  , unlike the 

Legendre spacings for which all nodal points lie inside the segment. Hence, the predictor with the Lobatto spacings is 
better, which is very important for its software implementation. 

As simple examples of the collocation methods, consider the Runge–Kutta methods well-known for a long time 
and including the explicit and implicit Euler methods (Radau I and II: 1s  , 1p ), the midpoint method (Legendre: 

1s  , 2p  ), the trapezoidal rule (Lobatto: 2s  , 2p  ), and the Simpson method (Lobatto: 3s  , 4p  ). If we 

take the Lagrange polynomial  

 1( ) s k
jj k j

j k

c

c c 
 

 


 p f  

as an interpolant of equation function (1), collocation method (10) acquires the classical form of the Runge–Kutta 
method [1–4]: 
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 1 0 01 1, ( 1, , )s s
j j i ij jj jh b h a i s      x x f u x f  , (12) 

where the constants are expressed through the integrals of the basic Lagrange functions: 

 
1

0 0
d , dic k k

ij jk j k j
j k j k

c c
a b

c c c c 
   

   
 

   . 

Soon after the publication of the first works on the Runge–Kutta collocation methods [1, 2], E. Everhart [6, 7] 
proposed to use the polynomial in the canonical form3 

 1
1( ) s j

jj


  p a  

as an interpolant. Here 1( , , )j j sa a f f  ( 1, , )j s  . The simple interpolation yields a sufficiently simple form of 

the approximate solution  

 1 0 01 1, ( 1, , )j js s j
i ij jh h c i s

j j      
a a

x x u x  . (13) 

However, to express the coefficients of the polynomial a  through the collocation values of the function f , the author 

expressed the divided differences of the Newton polynomial α  directly through the collocation values. Meanwhile, the 
coefficients of the canonical polynomial are expressed in terms of the divided differences by means of the linear 
relations 

 ( 1, , )s
j ij ii j c j s a α , 

where the constants are calculated from the nodal values of spacing 1, , sc c  using the recurrent formulas 

 1, 1 1 1,1 ( 0), ( 0)ii ij i j i i jc i c c c c i j         . 

1.2. Second-order differential equations 

Suppose now that the dynamical system is described by the second-order vector differential equation  

 ( , , )t x f x x  (14) 

with the known initial dynamic state at time 0t : 

 0 0 0 0( ), ( )t t  x x x x . (15) 

It is required to determine the dynamic state of the system at time 0t h : 

 

                                                           
 
3 Though the author himself did not present his method as a collocation one. 
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 0 0( ), ( )t h t h x x . (16) 

Here x  and x  are the coordinate and velocity vectors, respectively.  
We represent the approximate solutions for the coordinates and velocity in the form of polynomials 

 ( ) ( ), ( ) ( ) ( )t t t t t   u x v u x , (17) 

which should satisfy to Eq. (14) at collocation times 0 0[ , ]it t t h  ( 1, , )i s  : 

 ( ) ( ) ( , ( ), ( )) ( 1, , )i i i i it t t t t i s   u v f u v  , (18) 

and to the initial condition (15): 

 0 0 0 0( ), ( )t t x u x v . (19) 

Then solutions (16) with allowance for (17) are approximately determined as 

 1 0 0 1 0 0( ) ( ), ( ) ( )t h t h t h t h        x u x x v x . (20) 

According to (18), the Lagrange conditions for the interpolant p  of the function f   

 0 0( ) ( ) ( )t h t h       u v p  (21) 

can be represented in the form 

 0( ) ( , , ), ( ), ( ), ( 1, , )i i i i i i i i i i ic t t t t t hc i s      p f f u v u u v v  . (22) 

Forming the polynomial interpolant p  from conditions (22) and then integrating (21) over   on the segments 

[0,1]  and [0, ]ic ( 1, , )i s  , we obtain a set of formulas of the collocation method for differential equation (14): 

 

1 12 2
1 0 0 1 00 0 0

2 2
0 0 00 0 0

( )d , ( )d ,

( )d , ( )d ( 1, , ),i ic c
i i i

h h h

hc h h i s





          

          

  

  

x x x p x x p

u x x p v x p 
 (23) 

where the subintegral polynomial p  depends also on the intermediate solutions 1, , su u  and 1, , sv v . 

1.3. Mixed systems of the first- and second-order differential equations 

The problem described by (14) and (15) can be represented in the form of (1) and (2): 

 0 0 0 0 0, ( , , ), ( ), ( )t t t      x x x f x x x x x x x     . (24) 

In spite of the fact that both problems describe the same dynamical system, according to the collocation principle, their 
numerical solutions will differ significantly. Indeed, according to (10), for the alternative problem we have the 
approximate solutions 
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1

1 1 0 0 0 00 0
( , ) ( , ) ( ( ), ( ))d , ( , ) ( , ) ( ( ), ( ))d ( 1, , )ic

i ih h i s           x x x x q p u v x x q p    , (25) 

where the polynomial q  interpolates the right-hand side of the equation for the coordinate vector. The accuracies of 

solutions (25) (for coordinate and velocity vectors) are of the same order p . However, the solution for the coordinates 

in (23) has the order 1p   owing to double integration; in other words, the coordinates in (23) are determined more 

precisely than in (25). 
Nevertheless, sometimes the user is compelled to use the representation of the dynamical system in the form of 

Eqs. (24), thereby using the integrator for first-order equations (25) understanding that this inevitably reduces the 
accuracy of the approximate solution. This is necessary when Eq. (14) describing the dynamical system is supplemented 
with the first-order equations for some auxiliary dynamic quantities. For example, the mixed systems are used to 
investigate dynamical chaos [10] as well as for linearization, regularization, and stabilization of the dynamic equations 
[11–14]. In this case, Eqs. (24) are used instead of Eq. (14) in order that to reduce all equations of the mixed system to 
the same order. The alternative variant is to differentiate the additional equations so that the system as a whole was 
described by Eq. (14), though for complex dynamical systems, taking derivatives of functions of the additional 
equations is often practically impossible. 

The natural and effective approach to solving mixed system of equations is the application of the hybrid 
integrator. If it is required to solve the first-order vector equation for auxiliary dynamic quantities z  together with 
Eq. (14): 

 ( , , , )t z g x x z  (26) 

with the initial condition 0 0( )tz z , the set of formulas (23) should be supplemented with the formulas 

 
1

1 0 00 0
( )d , ( )d ( 1, , )ic

ih h i s         z z r w z r  . (27) 

Here the interpolant r  of the function g  is constructed by analogy with the interpolant p  from the intermediate 

solutions 1, , su u , 1, , sv v , and 1, , sw w . Thus, the hybrid collocation method for Eqs. (14) and (26) has the form 

of (23) and (27). 

2. INTEGRATOR LOBBIE 

For the mixed system of differential equations (14) and (26)  

 0 0 0 0 0 0( , , , ), ( , , , ), ( ), ( ), ( )t t t t t         x f x x z z g x x z x x x x z z , (28) 

we take as interpolants the Newton polynomials 

 1 1
1 11 1( ) ( ) and ( ) ( )j js s

j k j kj jk kc c 
           p rα β  (29) 

with the Lobatto spacings 1( 0, 1)sc c  . Here 0
1 1k  . The divided differences in (29) are determined in terms of 

the nodal values of the functions f  and g  using the recurrent formulas 

 

, , : ( ) ( ) , : ( ) ( )

( 1, , ; 1, , 1).

j j j j j j k j k j j k j kc c c c

j s k j

       

  

f g

 

α β α α α β β β
 (30) 
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Substituting interpolants (29) into (23) and (27) as well as considering that 1 0c   and 1sc  , we obtain the collocation 

method for system (28) in the form 

 

1 0 1 0 1 0

2
0 0 0 01 1 1

1 1 1

, , ,

, , ( 2, , ),

, , ,

s s s
i i ij j i ij j i ij jj j j

s s s

hc h a h b h b i s  

  

        

  

  

u x v x w z

u x x v x w z

x u x v z w

α α β  (31) 

where 

 1 12
1 10 0 0
( )d , ( )d ( , 1, , )i ic cj j

ij k ij kk ka c b c i j s
  

              . (32) 

We designate the k -fold integral of the j th Newton basic function by 

 1 10 0
( ) ( ) ( )d k

jk jc c
 

          . (33)  

If one considers ( )jk  ( , 1, , 1)j k s   as elements of some matrix   of size ( 1) ( 1)s s   , the constants of the 

collocation method – integrals of the Newton basic functions (32) – will form its first two columns:  

 2 1( ), ( ) ( , 1, , )ij j i ij j ia c b c i j s      . 

Meanwhile, the elements of the matrix   for any arbitrary value   are calculated row-by-row using the recurrent 
relations: 

 1 1 1, 1, 1! ( 1, , 1); ( ) ( 2, , ; 1, , 2)k
k jk j j k j kk k s c k j s k s j                     . (34) 

Nonlinear equations (31) for 1, , su u , 1, , sv v , and 1, , sw w  are solved at each step by the fixed-point 

iteration in the Seidel modification. Before iterations, the solutions 1u , 1v , and 1w  are known together with the divided 

differences 

 1 1 0 1 1 1 1 1 0 1 1 1( , , , ) and ( , , , )t t   f f u v w g g u v wα β  

at the first collocation point 1 0c  . In the beginning of the iterative process at the second collocation point 2c , the 

group of solutions 2u , 2v , and 2w  is determined, and from them 2f  and 2g , by which the divided differences 2α  

and 2β  are refined using recurrent formulas (30). Then the divided differences 3α  and 3β  at the third collocation point 

3c  are refined in the same way. After successive refinement of all divided differences at the step, the iteration is 

repeated. The iterative process is continued until the inequality 

 || * || || ||s s s  u u u  (35) 

is satisfied. Here *su  is the solution su  at the preceding iteration and   is a small parameter that determines the 

accuracy of convergence. By the way, the number of iterations at the step can be preset disregarding condition (35). In 
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this case, it should be borne in mind that the obtained solution su  will not correspond to the preset order, and the 

method will lose the geometrical properties. 
As initial values of the divided differences α  and β , one accepts their estimates obtained from recurrent 

formulas (30) using extrapolated values of the functions f  and g :  

 (1 ), (1 ) ( 1, , )i i i ic c i s    f p g r  . (36) 

At the first step, in the absence of such estimates, the iterative process begins with zero values of the divided 
differences, and continues until condition (35) is satisfied.  

For multiple derivation of solutions on a dense time grid, it is convenient and expedient to use an appropriate 
collocation polynomial covering the times of the grid at a certain step rather than to carry out step-by-step integration at 
each of these times. The collocation polynomials for system (28) at any arbitrary time 0t h   can be represented in the 

form 

 2
0 0 2 0 1 0 11 1 1( ) ( ) , ( ) ( ) , ( ) ( )s s s

j j j j j jj j jh h h h                     u x x v x w zα α β , (37) 

where 1( )j   and 2( )j  ( 1, , )j s   are calculated by formulas (34). 

An alternative method of obtaining the time series of approximate solutions is polynomial interpolation on 
intermediate solutions, for example, of type (29): 

 1
1 1( , , )( ) ( , , ) ( )js

j j j kj k c
     u v w u v w . (38)  

However, the accuracy of interpolation polynomials (38) between the collocation points appears much lower than the 
accuracy of collocation polynomials (37) obtained by direct integration of polynomials (29).  

The step size h  as an integrator parameter is assigned by the user. However, the automatic choice of the step 
size is possible during step-by-step integration. The h  value is chosen so that the approximate estimate of the s-order 
term of the Taylor series for the velocity vector was retained [5]: 

 ( )
cal|| || || || || ||

!

s
s

s
h h

s s
 e xα , (39)  

that is, if the term of the series is considered as the principal error term, the step size should be determined as for 
a method of order 1p s  , though the order with the Gaussian quadrature spacings is significantly higher (not less 

than twice). Unfortunately, it is practically impossible to obtain the estimate of higher order.  
Suppose that estimate (39) should be equal to a constant tol|| ||e  assigned by the user. Since 

 ( ) ( )
cal tol|| || || || and || || || ||

! !
  

s s
s sh

s s
e x e x


, 

the step size   needed to provide tol|| ||e  can be estimated as  

 

1

tol

cal

|| ||

|| ||

s

h
 

  
 
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After obtaining estimate (40) at the current step, integration is not repeated with the new step size  , but at the next 
step, it is used according to the formula 
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where n  and 1n   are the numbers of the current and subsequent steps, respectively. We note that the automatic 
choice of the step size implies the modification of predictor (36), namely 

 (1 ), (1 ) ( 1, , )i i i irc rc i s    f p g r  . (42) 

Algorithm (41) is effective if nh  and 1nh   for any n  differ insignificantly. Noticeable changes in the sequence 

of estimates (41) are observed when the function f  behaves irregularly, for example, during integration in the vicinity 

of its singularities. To avoid large differences between nh  and 1nh  , damping of the ratio 1n nr h h  is required, that 

is, the restrictions 

 1 1 1 1 1 1: ors s s s s sr r r r r                 (43)  

should be imposed on it. Here   defines the range of admissible variations of cal|| ||e . In order that cal|| ||e  changed 

within one order of magnitude, we should set 10 3.16   . If the left side of inequality (43) is not fulfilled, the step 

is repeated. 
The initial step size 1h  is determined from estimate (41) for 2s   [5]: 
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 (44)  

Here   is a small value. If   is so small that in computer arithmetic 2 1f f , it is increased by an order of magnitude, 

and estimate (44) is repeated. Estimate (44) of the starting step size is adequate only for the Euler method of the first 
order. Therefore, for the method of any other order, the starting step size will be much less than that expected. 
Nevertheless, the step-by-step integration begins with estimate (44), but then with the use of algorithm (41) with 
allowance for restrictions (43), the step size will gradually reach the proper value of the regular operating mode of the 
integrator with automatic choice of the step size.  

The last step is revealed from the condition 

 0 1( ) 1n nt t t h     ,  (45) 

where t  is the length of the entire interval of integration and nt  is the time of the n th step. Then to obtain the time 

0t t  , the last step size is chosen compulsorily as 1 0n nh t t t     , and its ratio to the current step size nh  is 

redefined: 1n nr h h . 

3. PROCEDURE LOBBIE 

The integrator was implemented in Fortran up to order 32 in computer arithmetic with double and quadruple 
precision. The program procedure of the integrator Lobbie is called by the command 
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 call lobbie (x, y, z, ts, tf, step, etol, nxy, nz, ns, ni, nst, ncf, fun). 

Here x, y, z are the arrays of integral variables , ,x x z , respectively: at the input, their values at an initial moment of 

time 0t  (ts); at the output, their values at a final moment of time 0t t   (tf); step is an initial step size 1h : for 

automatic choice (41) its output value is nh  (the size at the penultimate step), while if step is zero, 1h  is assigned by 

the integrator according to estimate (44); etol is tol|| ||e : at zero value, the mode of a constant integration step; nxy and 

nz are dimensions of the arrays x, y ( dim dim x x ), and z ( dim z ), respectively; ns is the number of nodal values 

s ; ni is the maximal number of iterations at the step for solving nonlinear equations (31) for 1, , su u , 1, , sv v , and 

1, , sw w ; nst and ncf are the numbers of the steps and calls of the procedure fun for evaluation of functions f  and 

g  over the entire interval of integration. The procedure fun is defined as 

 subroutine fun(t, x, y, z, f), 

where t is a current time t ; x, y, z are the arrays of integrated variables with values at time t ; f is the output array of 
values of functions f  and g  with dimensions dim dimf g . 

The computational process in the procedure Lobbie is carried out according to the flow chart presented in 
Fig. 2. We now briefly describe the main stages of step-by-step integration in the case of a variable step with 
an automatic choice of its starting value, while time increases ( 0)t  . 

 

Fig. 2. Flow chart of the procedure Lobbie. 
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I. From the data block attached to the procedure, the array of the nodal values 1, , sc c  is read, and the 

integrator constants (32) are recurrently calculated by using (34). The starting step size 1h  is estimated by (44). If the 

condition 1h t   is fulfilled, the starting step is considered to be the last, and then the size is set 1h t  .  

II. The intermediate solutions 1, , su u , 1, , sv v , and 1, , sw w  (31) are iteratively determined together 

with the functions 1, , sf f  and 1, , sg g  (28) as well as the divided differences 1, , sα α  and 1, , sβ β . Iterations 

ends when condition (35) is satisfied or when the number of iterations reaches its maximum value ni . 

III. When the iterative process ends, the solutions 1 1 1, ,x x z  (31) are formed taking into account the refined 

divided differences sα  and sβ  at the last iteration. The scaling multiplier r  (41) is estimated with allowance for 

damping conditions (43).  
IV. If the step is the last one, the procedure ends. Otherwise, the size of the successive step (41) is defined. The 

fulfillment of condition (45) establishes the last integration step, and then its size is redefined so that to reach the final 
time 0t t  .  

V. The values of the divided differences (30) are extrapolated using the values of the functions of differential 
equations (42) and the computing process is repeated from item II, where the obtained solutions 1 1 1, ,x x z  are accepted 

to be the initial ones 0 0 0, ,x x z .  

CONCLUSIONS 

Thus, the theoretical background of the new collocation integrator intended for solving the mixed systems of 
first- and second-order differential equations of dynamics have been outlined in the paper. The practical implementation 
of the integrator was considered, and the software procedure Lobbie was described. In future we plan to present results 
of testing of the new integrator on the example of simple dynamical systems and show its efficiency compared to other 
integrators widely used in practic. 

The research was carried out within the State Assignment of the Ministry of Science and Higher Education of 
the Russian Federation No. 0721-2020-0049. 
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