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Abstract Orbit determination from a small sample of observations over a very short ob-
served orbital arc is a strongly nonlinear inverse problem. Meanwhile, in problems like that
an evaluation of orbital uncertainty due to random observation errors is greatly complicated
since linear estimations conventionally used are no longer acceptable for describing the
uncertainty even as a rough approximation. Nevertheless, if an inverse problem is weakly
intrinsically nonlinear then one can resort to the so-called method of disturbed observations
(aka observational Monte Carlo).

Previously, we showed that the weaker the intrinsic nonlinearity, the more efficient the
method, i.e. the more accurate it enables one to stochastically simulate the orbital uncer-
tainty, while it is strictly exact only when the problem is intrinsically linear. However, as we
ascertained experimentally, its efficiency was found to be higher than that of other stochastic
methods widely applied in practice.

In the present paper we investigate the intrinsic nonlinearity in complicated inverse prob-
lems of celestial mechanics when orbits are determined from little informative samples of
observations, which typically occurs for recently discovered asteroids. To inquire into the
question we introduce an index of intrinsic nonlinearity. In asteroid problems it evinces that
the intrinsic nonlinearity can be strong enough to appreciably affect probabilistic estimates,
especially at the very short observed orbital arcs that the asteroids travel on for about a
hundredth of their orbital periods and less.

As is known from regression analysis, the source of intrinsic nonlinearity is the nonflat-
ness of the estimation subspace specified by a dynamical model in the observation space.
Our numerical results evidence that when determining asteroid orbits it is actually very
slight. However, in the parametric space the effect of intrinsic nonlinearity is exaggerated
mainly by the ill-conditioning of the inverse problem.

Even so, as for the method of disturbed observations, we conclude that it practically
should be still entirely acceptable to adequately describe the orbital uncertainty since, from
a geometrical point of view, the efficiency of the method directly depends only on the non-
flatness of the estimation subspace and it gets higher as the nonflatness decreases.
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1 Introduction

Observations of any celestial body are littered with various errors uncorrectable owing to
their randomness. When determining the orbit of a space object from observations like those,
the observation errors are inevitably transmitted to the determined parameters of an adopted
orbital model. Thus orbit determination is always associated with orbital uncertainty caused
by random errors of observations.

Meanwhile, numerical evaluation of the uncertainty in orbital parameters is generally
implemented using stochastic simulation (Chernitsov et al., 1998; Virtanen et al., 2001;
Bordovitsyna et al., 2001; Williams et al., 2005; Muinonen et al., 2006; Avdyushev and
Banschikova, 2007; Milani and Gronchi, 2009; Desmars et al., 2009; Avdyushev, 2009;
Emel’yanov, 2010; Avdyushev, 2011). In common practice, very often one resorts to linear
evaluation: from observations of a celestial body one determines its orbit by some technique
of regression analysis, as a rule, that of least squares (LS); one estimates the covariance
matrix of orbital parameters; and by a Monte Carlo method one simulates a cloud of virtual
dynamic states of the celestial body in the parametric space. The density of this uncertainty
cloud corresponds to the probability density of a multidimensional normal distribution.

This approach is rigorously valid only for linear models, i.e. when the connection be-
tween observations and parameters is linear. Orbital models are nonlinear. However, if the
nonlinearity is weak over the set of virtual dynamic states then the approach in terms of
linear estimations is quite acceptable as well.

If the nonlinearity is strong then the scatter of virtual dynamic states will not correspond
to a normal distribution. In this case for simulating the uncertainty cloud one can use the so-
called method of disturbed observations (Press et al., 1987; Avdyushev, 2009, 2010, 2011)
(aka observational Monte Carlo)1. It consists in repeatedly determining orbital parameters
from disturbed observations obtained by adding to the original ones a normal noise with
zero mean and an observational error variance. This technique is widely used in practice,
although its applicability is also restricted since it is valid only if the estimation subspace
specified by an orbital model in the observation space is flat (Avdyushev, 2011).

In any linear problem the estimation subspace is flat. It means that there exists such
a rectangular coordinate system that can span the estimation subspace in the observation
space. However, the same flat subspace can be spanned by a curvilinear coordinate system,
and if one takes the curvilinear coordinates as model parameters then the problem obviously
gets nonlinear though it stays flat. Thus any flat problem can be both linear and nonlinear.
If it is nonlinear then one can reduce it to a linear problem by an appropriate (nonlinear)
transformation of parameters. In this case the problem is said to be intrinsically linear (or
nonintrinsically nonlinear) (Draper and Smith, 1981).

In inverse problems of celestial mechanics the estimation subspace is not flat and it has
a curvature called for convenience the normal one that is directly related to the geometry of
the estimation subspace and that does not depend on a selection of determined model param-
eters. Consequently, if an inverse problem is not flat then it cannot be reduced to a linear one
by reparametrization. Nonlinear problems like that are called intrinsically nonlinear (Draper
and Smith, 1981).

In the present paper we put and try to answer the question: if the total nonlinearity is
very strong (e.g. when an orbit is determined very unreliably because of a scant sample of

1 Certainly, there exist other nonlinear methods. See e.g. in (Virtanen et al., 2001; Muinonen et al., 2006;
Milani and Gronchi, 2009; Desmars et al., 2009; Emel’yanov, 2010). However, their theories bear no relation
to the intrinsic nonlinearity we discuss in the paper. Those methods rather aim at solving the problem of strong
so-called parameter-effect nonlinearity (Bates and Watts, 1988) than that of strong intrinsic nonlinearity.
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observations) how strong can the normal nonlinearity be in the inverse problems of celestial
mechanics to appreciably influence on the distribution of virtual dynamic states? To inquire
into the question we introduce an index of intrinsic nonlinearity. Formerly, in (Avdyushev,
2011) another index was proposed though it enables one only to evaluate the normal cur-
vature of the estimation subspace but tells nothing about how substantial its influence on
virtual dynamic states can be.

We employ the index for studying the intrinsic nonlinearity in asteroid inverse prob-
lems, where stochastic simulation of orbital uncertainty is of very great importance (e.g.
for estimating the probability of asteroid impacts with the Earth). We also assess the lo-
cal nonflatness of the estimation subspace. It directly relates to the normal curvature and
defines how considerable the estimation subspace differs from a flat one around the LS-
estimation (obtained from observations) within a domain of observational uncertainty. The
local nonflatness is interesting in that its smallness actually affords practical ground for the
method of disturbed observations while, according to its geometry, the method is theoreti-
cally grounded only in the strictly flat case (Avdyushev, 2011).

2 Normal Curvature of Estimation Subspace

The problem of intrinsic nonlinearity is well-known in mathematical statistics (Beale, 1960;
Draper and Smith, 1981; Bates and Watts, 1988) while it is quite unexplored in celestial
mechanics. Furthermore, after our thorough examination of papers on nonlinearity (Avdyu-
shev, 2011) we came to the conclusion that in celestial mechanics we were the first who
highlighted this problem and indicated possible hardships caused by the intrinsic nonlinear-
ity while systematically we did not yet investigate the correlation between it and conditions
of inverse problems, especially with small samples of observations.

In (Avdyushev, 2011) we introduced an index of intrinsic nonlinearity as an angle be-
tween the direction from the LS-estimation point towards a given point of the estimation
subspace and a flat subspace tangent to the estimation one at the LS-estimation point in the
observation space. The geometric sense of the index is simple to realize in a problem with
three observations (N = 3) and two parameters (K = 2). Its geometry is shown in Fig. 1.
Here pO is the point of observations in the 3-dimensional observation space; p̄ and p̂ on the
estimation surface ρ are the points specified by a nonlinear model pC = pC(q) with the exact
parameter values q̄ and their LS-estimates q̂ respectively, the estimation surface ρ being the
locus of all possible points pC ; δpO is the observation error vector; S is the value of the
least-squares objective function, the squared distance from the point of observations pO to
any point of the estimation surface ρ, it reaching the least value Ŝ 1/2 for the point p̂ which
is the orthogonal projection of pO onto ρ.

So, as we see, the angle φ can stand as an index of intrinsic nonlinearity (or local non-
flatness). It is determined from the formula (Avdyushev, 2011)

sinφ =
(pO − p̂) · (pC − p̂)
∥pO − p̂∥ ∥pC − p̂∥ . (1)

To evaluate how strong the intrinsic nonlinearity influences on forming a cloud of virtual
dynamic states by the method of disturbed observations, one needs to calculate the angle φ
for every state and then to analyse the distribution of its values. Obviously, the major part
of them must be near zero. While very large angle values are to be appreciably fewer, they
are just the ones that reveal strong nonlinearity: the larger these values, the stronger the
nonlinearity.
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Fig. 1 Geometrical interpretation of a nonlinear LS-problem for N = 3 and K = 2. Here pO is the point
of observations; p̄, p̂ and pC on the estimation surface ρ (grey) are the point of the exact observations, its
LS-estimation and an arbitrary point respectively; the grid shows a tangent plane to the estimation surface at
the estimation point p̂; δpO is the observation error vector; ∆p is the deviation of the arbitrary point pC from
the estimation p̂; φ is the angular deviation of the vector ∆p from the tangent plane; S is the squared distance
(Ŝ is the least one) from the point of observations pO to the estimation surface

The main inconvenience in using the angular index consists in that an ample quantity of
angle values is required for evaluating the intrinsic nonlinearity. It would be more convenient
to have a different index whose single value (or maybe several values) could characterize the
intrinsic nonlinearity. The curvature of the estimation subspace can be taken as an index like
that. It is directly related to the curvatures of the coordinate curves

pi(ζ) = pC(q̂1, . . . , q̂i−1, q̂i + ζ, q̂i+1, . . . , q̂K) (i = 1, . . . ,K), (2)

where ζ is a free parameter of the i-th curve. Hereinafter dim q = K and dim p = N. Thus, to
evaluate the intrinsic nonlinearity it is necessary to calculate the normal curvatures of all the
coordinate curves, and the maximum of these will just stand as that very index of intrinsic
nonlinearity.

The normal curvature of every coordinate curve can be obtained as follow. First, we
evaluate the variations along the coordinate curves

∆pi = pi(∆ζi) − p̂ (i = 1, . . . ,K), (3)

where ∆ζi is a small parameter variation. Then, using the matrix of partial derivatives p′q =
∂pC/∂q for q̂, we compose the idempotent matrix

Π = p′q((p′q)T p′q)−1(p′q)T (4)

orthogonally projecting any point of the observation space onto the tangent subspace whose
basis is specified by the columns of the matrix p′q. Applying the matrix-projector to the
vectors ∆pi, we obtain their projections Π∆pi (i = 1, . . . ,K).

Further, for every coordinate curve we calculate the angle φ (Fig. 1):

cosφi =
∆pi ·Π∆pi

∥∆pi∥ ∥Π∆pi∥ =
∥Π∆pi∥
∥∆pi∥ , (5)

which is related to a normal deviation of the coordinate curve from the tangent subspace. In
any flat case, evidently, φi = 0 (i = 1, . . . ,K).
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Fig. 2 Geometrical interpretation of a nonlinear LS-problem for N = 2 and K = 1. The grey and black thick
lines are the estimation subspaces ρ in flat (straight) and nonflat (curved) cases respectively. The point p◦ is
the center of curvature of the curved estimation line and r is the radius of curvature; p is an arbitrary point in
the observation plane with coordinates x and y; pC (grey and black) are the orthogonal projections of the point
p onto the estimation lines, i.e. they are also the LS-estimation points as if p would be a point of observations;
their coordinates are x in the straight case and ξ in the nonstraight case; pO, p̂ and φ have the same meanings
as in Fig. 1

Finally, using the angular values, we approximately find the normal curvatures

κi ≈ 2φi

∥∆pi∥ (i = 1, . . . ,K). (6)

So we can consider the maximum of the normal curvatures

κ = max
i=1,...,K

κi (7)

as an index of intrinsic nonlinearity. However, we do not know at all yet how large its value
must be for the intrinsic nonlinearity to be regarded as strong. What is its boundary value
between the values of weak and strong intrinsic nonlinearity? By the way, the same question
concerns the angular index (1). In the next section we make an evaluation of this boundary
value.

3 Index of Intrinsic Nonlinearity

Consider a nonlinear but flat LS-problem with N = 2 and K = 1 (Fig. 2). The observation
space of the problem is a plane with coordinates x and y while the estimation subspace ρ
is a straight line on the plane. Suppose that the estimation line coincides with the x-axis
perpendicular to the y-axis, the estimation p̂ being the center of the coordinate system.

Bend now the line as a flexible ruler fixed at p̂, laying it on a circle of radius r (centered at
the point p◦). So we get a new estimation subspace being a curved line of curvature κ = 1/r.
Let an arbitrary point of the observation plane have the coordinates p = (x, y)T . Obviously,
for this point the coordinate of the LS-estimation pC on the straight estimation line is x and
it differs from that on the curved estimation line ξ (Fig. 2). The question is how essential the
difference between x and ξ is.
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According to the geometry of the problem, a relative change of the LS-solution due to
the curving of the estimation line is

δx
x
=

x − ξ
x
, where ξ = r arctan

x
y + r

.

Assume that r ≫ ∥p − p̂∥ (therefore r ≫ |y|) then up to first order small values we have

δx
x
=

y
r
. (8)

In the general case, the curving of the estimation subspace leads to similar relative
change values ∥δpC∥/∥pC − p̂∥. However, we should be interested only in the relative change
along the coordinate curve with the maximum normal curvature κ. To that we can use (8):

∥δpC∥
∥pC − p̂∥ =

∣∣∣∣∣δxx
∣∣∣∣∣ = |y|r = κ|y|, where y =

(p − p̂) · (pO − p̂)
∥pO − p̂∥ , (9)

as if we would consider the effect of the curving in the x–y plane where the x-axis and y-axis
are orientated along respectively the tangent to the curve at the point p̂ and the normal to the
estimation subspace, i.e. along the direction to the point pO.

Further, any relative change value ∥δpC∥/∥pC − p̂∥ in the estimation subspace inevitably
cause a response value ∥δq∥/∥q − q̂∥ in the parametric space. To establish linkage between
them, we can use the linear relations

δpC = p′qδq, pC − p̂ = p′q(q − q̂).

They give the quadratic forms

∥δpC∥2 = δqT (p′q)T p′qδq, ∥pC − p̂∥2 = (q − q̂)T (p′q)T p′q(q − q̂)

with respect to δq and q − q̂. Hence,

∥δq∥2max =
∥δpC∥2
λmin

, ∥q − q̂∥2min =
∥pC − p̂∥2
λmax

,

where λmin and λmax are respectively the minimum and maximum eigenvalues of the normal
matrix

Q = (p′q)T p′q. (10)

So we obtain the maximum of all possible relative change values in the parametric space:

∥δq∥max

∥q − q̂∥min
= c

∥δpC∥
∥pC − p̂∥ , where c2 = cond Q =

λmax

λmin
. (11)

Let f (q) be a probability density function in the parametric space q. Suppose that the
curving of the estimation subspace results in the parametric transformation γq, where γ =
1 ± ∥δq∥max/∥q − q̂∥min. This causes the change of the probability density function

g(γq) = g(Γq) = detΓ−1 f (q) = f (q)/γK , Γ = diag(γ, . . . , γ),

and, consequently, the relative deviation of the probability mass P inside any small region

|δP|
P
≈ |g − f |

f
≈ |γ−K − 1| ≈ K

∥δq∥max

∥q − q̂∥min
.
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According to (9), up to first order small values we have

|δP|
P
= cKκ|y|.

Thus we can get the critical value κ∗ that the curvature κ must not reach, i.e. the condition

κ < κ∗ =
|δP/P|tol

cK|y|max
or κ =

κ

κ∗
< 1 (12)

must hold. Here |y|max is the maximum of possible values |y| and |δP/P|tol is a tolerable
relative probability error. The dimensionless quantity κ in (12) is just that we propose to
take as an index of intrinsic nonlinearity instead of κ: if κ < 1 then the intrinsic nonlinearity
is weak, else it is strong.

In practice, having solved an inverse problem, we have already most of the values to cal-
culate the index κ. These are the derivative matrix p′q (for Π and Q), the condition number c
(11) as well as the number of model parameters K and the tolerable relative probability error
|δP/P|tol known before solving the problem. The value |y|max stands as a maximum possible
value of observation error. We can specify it under some priori considerations although we
can also take the root-mean-square error of the processed observations, which is known after
solving the problem too, or a multiple of it with small integer multipliers, say, not greater
than 5. We have but to find variations (3) using the model to calculate κ (7) and then κ (12).

It is worth noting that the condition number c (12) directly depends on the model param-
eters q and so one should speak about weak or strong intrinsic nonlinearity only in terms of
these parameters. Accordingly any reparametrization is able either to weaken or to aggravate
the intrinsic nonlinearity while the normal curvature κ remains the same.

In fact the index κ (7) should be regarded as a measure of the contribution of intrinsic
nonlinearity to the discrepancy between probabilistic estimates within the original nonlinear
model pC = pC(q) and its linearization. For example, if we use a covariance matrix for
investigating parametric uncertainty then the index enables us to see how inaccurate our
probabilistic estimations within a linearized model can be due to the intrinsic nonlinearity.
It stands to reason that a large value of the index signals on strong intrinsic nonlinearity.
Though we can still obtain quite acceptable probabilistic estimations if we resort to the
method of disturbed observations. The question on its efficiency in strongly intrinsically
nonlinear problems is discussed in the next section.

4 Method of Disturbed Observations

Further, we briefly remind the reader of the essence of the technique we call the method
of disturbed observations and also discuss its capability allowing to simulate uncertainty
clouds eligible even in strongly intrinsically nonlinear problems. In more detail the method
is expounded in (Avdyushev, 2011).

Let νJ be a J-dimensional standard normal random vector: νJ ∼ N(0, IJ×J), where
dim 0 = J and IJ×J is the J× J identity matrix. Observation errors are supposed to be normal
variates with zero mean and an observational error variance σ2, then δpO = σνN . Therefore,
in any flat case p̂ − p̄ = σνK as this vector difference is a projection of δpO = pO − p̄
onto the K-dimensional estimation subspace ρ. Thus, though the point p̄ corresponding to
the true orbital parameter values q̄ is nonrandom, its deviation from the estimation p̂ is
random and normal, just the same as the deviation of p̂ from p̄. Consequently, if we get
some estimation p̂ from a sample of observations pO then we can expect the location of the
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point p̄ (corresponding to the exact observations) in compliance with the normal distribution
N(p̂, σ2IK×K). In other words, the probability distribution of the unknown point p̄ relative
to the estimation p̂ obtained from the sample of observations pO must be the same as that of
p̂ obtained from all possible samples of observations pO = p̄ + σνN relative to p̄.

According to LS-theory the estimation p̂ is the point pC of the estimation subspace ρ
that gives the minimum squared distance S to the point of observations pO (Fig. 1):

p̂ ∈ ρ : S = ∥pO − pC∥2 = ∥p̄ + δpO − pC∥2 → min . (13)

Since the vector of observation errors δpO is random, the estimation p̂ is random as well:

δpO = σνN ∼ N(0, σ2IN×N) and p̂ = p̄ + σνK ∼ N(p̄, σ2IK×K).

Hence it gets evident that for simulating the probability distribution of the unknown point
p̄ we can use (13) substituting the known estimation p̂ for p̄. So, repeatedly generating the
normal random vector δpO = σνN and solving the LS-problem (13) with p̂ instead of p̄:

p ∈ ρ : ∥p̂ + σνN − pC∥2 → min, (14)

we can numerically simulate a cloud in the estimation subspace which discretely describes
the probability distribution of p̄, i.e. p̄ ∼ N(p̂, σ2IK×K). To simulate a similar cloud of
uncertainty in the parametric space q we have to solve repeatedly the same LS-problem but
relative to the model parameters:

q : ∥p̂ + σνN − pC(q)∥2 → min . (15)

In a linear case, it gives a set of virtual dynamic states q corresponding to the normal distri-
bution N(q̂, σ2Q−1

K×K).
From a geometric point of view the technique (15) consists in projecting a cloud of

uncertainty p̂ + σνN in the observation space orthogonally onto the estimation subspace ρ
and further mapping it into the parametric space q in conformity with the model pC = pC(q).
When the estimation subspace is flat, there is no difference to disturb whether the estimation
p̂ or the point of observations pO. In practice it is convenient to add the disturbance σνN

straight to the observations pO, this is why we call this technique the method of disturbed
observations (Avdyushev, 2011).

If the error variance σ2 is unknown (as so often is the case in practice) then instead of it
one takes an unbiased estimate of the variance σ̂2 = S (q̂)/(N − K), which, as a statistics, is
related to the chi-squared distribution with N − K degrees of freedom:

σ̂2 = σ2 χ
2
N−K

N − K
, (16)

since S (q̂) = ∥pO − p̂∥2, while the vector pO − p̂ = σνN−K is normally distributed in the
(N − K)-dimensional subspace orthogonal to the estimation subspace. After substituting σ̂
for σ, the method (15) requires modifying by introducing a modulating random factor µ
(Avdyushev, 2011):

q : ∥p̂ + µσ̂νN − pC(q)∥2 → min, µ =
√

(N − K)/χ2
N−K . (17)

If the inverse problem is linear then, unlike (15), the modification (17) gives a set of vir-
tual dynamic states q which corresponds Hotelling’s distribution (Anderson, 1958) being a
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generalization of Student’s distribution to multidimensional cases. Obviously, µ → 1 and
σ̂2 → σ2 as N → ∞, therefore, when N is very large one can take µ = 1.

Imagine now that the estimation subspace has a constant normal curvature and the error
variance σ2 is known. What is interesting is that however large the curvature is, the method
of disturbed observations (15) turns out still good for simulating a cloud of uncertainty
while the inverse problem can be strongly intrinsically nonlinear. In fact, for any point of
the estimation subspace (including either p̄ or p̂) which we disturb, the distribution of its
disturbances projected onto the subspace is always the same. Consequently, according to
(14) the simulated distribution of the unknown point p̄ relative to p̂ will exactly reproduce
the distribution of the estimation p̂ obtained from all possible observations pO = p̄ + σνN

relative to p̄. It is just the same as in a flat case. This is easily seen by referring to a simple
problem with N = 3 and K = 2 (see Fig. 1) (or K = 1), where the estimation subspace is a
spherical surface (or a circular arc).

When the error variance σ2 is unknown and the normal curvature is large and variable,
there is no strict ground to use the technique (17) since the simulated distribution of p̄
relative to p̂ will not represent the distribution of p̂ relative to p̄ as above and the distribution
of σ̂2 will not correspond rigorously to (16). Nevertheless, as our numerical results show in
the next section, the normal curvature (or local nonflatness) in inverse problems of celestial
mechanics is so insignificant that it practically must not affect the distribution of the virtual
dynamic states simulated by the method of disturbed observations.

5 Numerical Results

5.1 Test Asteroid Problems

The main aim of our investigations was to find out how strong the intrinsic nonlinearity
can be in inverse problems of celestial mechanics, i.e. when the orbit of a celestial body is
determined from its astrometric observations. The question of nonlinearity is generally the
most significant in studying the orbital dynamics of potentially hazardous asteroids when
the probability that an asteroid will collide with the Earth requires estimating by stochastic
simulation. Therefore we set our numerical experiment so that its results would be related
to the asteroid problems.

Preliminary investigation had shown us (Avdyushev, 2011) that the intrinsic nonlinearity
got stronger as the observed orbital arc shortened. So we focused our attention on the inverse
problems with very short observed orbital arcs, and to come to some general conclusions,
we used simulated observations (without errors) rather than real ones, more by token, the
intrinsic nonlinearity is rather a property of an orbital model we accept than that of real
observations the model represents.

Since any short orbital arc is well described by a Keplerian orbit, we made all our cal-
culations within the two-body theory. First we simulated asteroid positions in heliocentric
coordinates x on some Keplerian orbit (with the unit semi-major axis) at uniformly dis-
tributed times (Fig. 3), then projected the positions onto the celestial sphere centered at an
observation point (or a position of the observer, viz., we mean the Earth) xO moving in a cir-
cular orbit, and thereby obtained the (geocentric) angle observations — the right ascensions
α and the declinations δ.

For every combination of the simulated orbital positions, we obtained 106 various sam-
ples of angle observations by varying an initial position of the observation point xO

0 . For an
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Fig. 3 Simulation of observations (x1–x2 plane projection). Here the symbols indicate the positions of the
celestial bodies at different times: the white ones are at times of observations and the grey ones are at an
initial time t0; α1 and α4 are the right ascensions (observations) at the first and last (fourth) times; the thick
black lines are the trajectories of Earth and asteroid motions in orbits (the grey lines) over the observation
period. In the figure is shown a particular case when the asteroid and the observation point (Earth) move in
circular orbits of radiuses 1 and 0.5 respectively in the same plane x1–x2, i.e. x3 = 0 and δ = 0. Though in
the general case the orbital plane of the observation point differs from that of the asteroid and depends on
an initial position of the observation point which is chosen at random inside the tolerance sphere (the dashed
circle is its boundary) to satisfy the observability condition β > 90◦.

asteroid to be observable in the night sky we supposed that the angle β between the direc-
tions from the observation point to the Sun and the asteroid should be greater than 90◦. Thus
we varied the initial position of the observation point xO

0 randomly and uniformly inside the
sphere for that the Sun (the coordinate origin) and the initial asteroid position x0 were dia-
metrically opposite points (Fig. 3), and for every sample of angle observations we checked
if inequality (12) held.

We had to create extremely bad conditions for the inverse problems. Therefore, we sim-
ulated only four pairs of angle observations without errors pO = pC = (α1, δ1, . . . , α4, δ4)T

on very short observed orbital arcs up to 2π · 10−3 long (e.g. for Ceres it is about 2 days).
The dynamic state vector q = (x0, ẋ0)T , the position and velocity related to some initial time
t0 within the observation span, was considered as determined from the observations pO. Ac-
cordingly, K = 6 and N = 8. For simulating the motion of the observation point xO its initial
position xO

0 was selected randomly while its initial velocity ẋO
0 was specified so that it was

circular and perpendicular to the applicate axis.

For potentially hazardous asteroids the best accuracy of CCD observations in 2016 is
about σ = 0.2′′ (www.minorplanetcenter.net). Taking into account the three sigma rule, in
(12) we specified |y|max = 3 · 10−6 ≈ 3σ = 0.6′′. Since in practice usually only the first digit
for a value of the probability P is of interest, we took |δP/P|tol = 5 · 10−2.

To evaluate the normal curvature κ (7) for inequality (12), analytic formulae for the par-
tial derivatives p′q were required. They were obtained by directly differentiating the formulae
of the two-body theory and then converting to the space of the angle observations. For ev-
ery parameter variation ∆ζi (3) the square root of the diagonal element cii of the covariance
matrix C = σ2Q−1 was taken: it just provided the best calculating accuracy for κ.
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Now, after the general description of the experiment, the basic consecutive stages in its
implementation are worth marking out.

1. At first we specified orbital elements and converted them into the orbital parameters
q = (x0, ẋ0)T at the time t0 = 0.

2. Simulated four positions on the Keplerian orbit at the times t1, . . . , t4: −t1 = −3t2 =
3t3 = t4 = ∆t/2, where the observation span ∆t = t4 − t1 corresponded to a given
observed orbital arc.

3. Set an initial position of the observation point xO
0 at random inside the sphere determined

by the observability condition β > 90◦ and simulated four observation points xO on the
circular orbit passing the point xO

0 at the same times as above.
4. Obtained the angular positions pC = (α1, δ1, . . . , α4, δ4)T .
5. Calculated the partial derivatives p′q, the idempotent matrix Π (4), the normal matrix Q

(10), and also the condition number c (11).
6. Varying sequentially every component of q by the corresponding value ∆ζ and repeating

stages 2 and 4, we found six variations in the angular positions ∆p (3).
7. Finally, according to (5)–(7) and (12), we calculated φi and κi (i = 1, . . . , 6) as well as κ

and κ.

For every orbit the sequence of stages 3–7 was repeated 106 times at different random initial
positions of the observation point xO

0 .
We examined inverse problems for orbits of all kinds. There were various distributions

of the intial observation points for that the inverse problems became strongly intrinsically
nonlinear, i.e. when κ > 1. As examples, in Fig. 4–6 distributions like those are shown for
three orbits — I, II, and III — determined from observations on three observed orbital arcs
s long — s/2π = 10−1, 10−2, and 10−3. All the orbits have the unit semi-major axes (a = 1)
while their inclinations I and arguments of pericenters ω are zero. The other orbital elements
— the eccentricities e, longitudes of ascending nodesΩ, and mean anomalies M0 at t0 — are
in the captions to the figures. The amounts of the inverse problems with κ > 1 percentage-
wise for every pair orbit–arc are given in Table 1 (Strongly intrinsically nonlinear problems).
Here are also presented both the minimum and maximum orders of condition numbers (Con-
ditionality) and the maxima of the value that indicates how the estimation subspace differs
from a flat one in the neighborhood of the LS-estimation (Local nonflatness).

So the figures and also the percentage of strongly intrinsically nonlinear problems in Ta-
ble 1 evince that the intrinsic nonlinearity can be strong enough to appreciably affect prob-
abilistic estimates, especially at the extra short observed orbital arcs. Nevertheless there are
configurations Sun–Earth-asteroid when the intrinsic nonlinearity is very weak, and some
of them (Fig. 6) correspond to the favorable circumstances for discovery of new asteroids,
viz., when the observed objects are in oppositions.

In actuality, the strong intrinsic nonlinearity is mainly caused by very large condition
numbers c (see their orders in Table 1). Only for orbit III, when c ≤ 104, there is revealed
no strongly intrinsically nonlinear problem. Therefore we suppose that if c > 104 then it
already gives cause for us to suspect that we deal with strong intrinsic nonlinearity.

Generally the condition number c (11) indicates how sensitive the estimation q̂ in the
parametric space to variations of the estimation p̂ in the observation space can be. We are
certainly interested in the variations like (9) due to the normal curvature of the estimation
subspace. It is remarkable that in our inverse problems they relative to the radius r of the
normal curvature κ turn out small enough. We judge it by the ratio |y|max/r = 3σκ which can
be regarded as an index of local nonflatness of the estimation subspace inside the cloud of
disturbances p̂ + σνN .
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Fig. 6 The same as in Fig. 4 but for orbit III: e = 0.75; Ω = 45◦; M0 = 180◦
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Table 1 Numerical results. Test asteroid orbits

Observed Strongly intrinsically Conditionality Local nonflatness
orbital arc nonlinear problems (%) lg cmin–lg cmax 3σκmax

s/2π I II III I II III I II III
10−1 2 1 0 1–5 1–5 1–4 2 · 10−5 10−4 5 · 10−5

10−2 30 35 17 3–8 3–8 3–7 10−4 10−4 10−4

10−3 75 80 53 5–11 5–10 4–10 10−4 3 · 10−4 2 · 10−4

Table 2 Orbital elements of real asteroids

Asteroid a (AU) T (days) e I (◦) Ω (◦) ω (◦) v0 (◦)
2016 PZ39 2.35 1315 0.80 4.3 79.7 118.3 118.7
2016 PQ39 1.68 798 0.54 7.9 18.4 53.7 248.8
2016 PO39 1.83 901 0.51 31.6 336.3 219.3 128.8

For orbits I, II and III the quantity 3σκ did not exceed 3 ·10−4 (Table 1). As for other test
orbits with various orbital parameters, the maximum values of the quantity were of the same
order. Compare, the horizon distance for a ground observer 4.7 km to the Earth’s radius
6.4 · 103 km is about 7 · 10−4. Meanwhile, Earth ellipsoid’s surface within the horizon is
seen as quite flat. Thus, in practice the local nonflatness of the estimation subspace is very
small and therefore we can surely use the technique (17) for simulating and studying orbital
uncertainty.

It should be noted that generally a small local nonflatness of the estimation subspace
means as well that there exist such parameters relative to which the inverse problem could
be weakly nonlinear and, moreover, with a very small condition number. How can we spec-
ify these parameters practically? That is a question of another paper. Anyway, Fig. 4–6
actually reveal the situations not only when the intrinsic nonlinearity is strong but when the
components of the vectors x0 and ẋ0 as parameters are not so appropriate in terms of orbit
determination.

5.2 Real Asteroid Problems

We also tried the index κ out to estimate the influence of intrinsic nonlinearity for some
recently discovered and potentially hazardous asteroids — 2016 PZ39, 2016 PQ39, and
2016 PO39 (www.minorplanetcenter.net). Their orbital elements are given in Table 2, where
T is the orbital period; v0 is the true anomaly at t0 (Table 3) and the inclination I is relative
to the ecliptic. The asteroids were discovered in August 2016 and observed only for several
nights (Table 3 and Fig. 7).

For processing the asteroid observations (www.minorplanetcenter.net) we used our own
software package. Its nucleus is a numerical orbital model based on second-order differen-
tial equations in rectangular heliocentric coordinates describing an asteroid motion under
the influence of gravitational forces of the Sun, the planets and the Moon. The equations are
integrated numerically by Everhart’s twelfth-order method (an implicit collocation Runge-
Kutta method on Gauss-Lobatto spacing) (Avdyushev, 2010). So the orbital model provided
asteroid positions accurate to 10−12 AU (10−6 arcsec), quite enough to process the observa-
tions. From the observations we determined the initial dynamic state vector q = (x0, ẋ0)T .

Since the observations represent short orbital arcs (see s in Table 4), they are little in-
formative on orbital motion and, therefore, the asteroid orbits are determined unreliably: we
can judge it by large values σx =

√
c11 + c22 + c33 and σẋ =

√
c44 + c55 + c66 characterizing
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Table 3 Characteristics of inverse problems

Asteroid N Observation period t0 σ̂ (′′) lg c σx (AU) σẋ (AU/day)
2016 PZ39 76 10–13.08.2016 12.08.2016 0.20 4 10−3 4 · 10−5

2016 PQ39 34 09–12.08.2016 11.08.2016 0.16 5 2 · 10−3 4 · 10−5

2016 PO39 28 07–12.08.2016 10.08.2016 0.32 5 3 · 10−2 3 · 10−4

Table 4 Numerical results. Real asteroid orbits

Asteroid s (AU) κ† κ 3σ̂κ
2016 PZ39 5 · 10−2 0.6 1.1 6 · 10−7

2016 PQ39 4 · 10−2 1.7 1.2 3 · 10−7

2016 PO39 6 · 10−2 4.3 14.0 9 · 10−7

initial position and velocity uncertainties (Table 3). Here cii (i = 1, . . . , 6) are the diagonal
elements of the covariance matrix C = σ̂2Q−1, the variances of the parameters q; σ̂ is the
root-mean-square error of the processed observations. Compare with the values σx = 2·10−8

AU and σẋ = 4 · 10−10 AU/day for Apophis whose orbit is well determined from a lot of
observations (N > 8000) over a span more than ten years.

Sizeable orbital uncertainty is usually associated with a strong influence of both total
and intrinsic nonlinearities. Indeed, the indices of intrinsic nonlinearity κ are greater than
the unit (Table 4) as well as those of total nonlinearity κ† considerably exceed the critical
value 0.1 (Avdyushev, 2011). By the way, for Apophis κ† = 2 · 10−4.

It is worth reminding that the total nonlinearity contains both the parameter-effect and
intrinsic nonlinearities (Bates and Watts, 1988). The former usually dominates and for this
reason it is impossible to evaluate the intrinsic nonlinearity by the index κ†. That κ† relating
to the general is less than κ relating to the particular (for 2016 PZ39 and 2016 PO39) should
not cause perplexity since they in nature are different values.

The large indices κ† mean that the clouds of uncertainty for all the three asteroids
markedly differ from ellipsoidal ones as in linear problems and, therefore, any linear stochas-
tic method here is not available. Meanwhile, the value 3σ̂κ does not reach 10−6, i.e. the local
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nonflatness is very slight. Consequently the method of disturbed observations can be confi-
dently used to simulate and investigate the uncertainties in the asteroid orbits.

The conditions of the inverse problems in this subsection are similar and if one compares
them with those in the previous subsection then, considering the types of the asterod orbits
and the circumstances of the observations, one can find that they are also similar to some
conditions for orbit III at s = 2π · 10−2 (Fig. 6) when the observation points (Earth) relative
to the Sun and asteroid are like in Fig. 7. Approximately, of the point set in Fig. 6, these
must be the boundary observation points between the Sun and asteroid being in opposition.

6 Conclusion

So in the paper we introduced the index of intrinsic nonlinearity that allowed us to reveal
the conditions of inverse problems of asteroid dynamics when the intrinsic nonlinearity get
strong enough to appreciably affect probabilistic estimates. Having emploied the index in
test inverse asteroid problems, we found out that mostly strong intrinsic nonlinearity occurs
at the very short observed orbital arcs that the asteroids travel on for about a hundredth of
their orbital periods and less.

The source of intrinsic nonlinearity is the local nonflatness of the estimation subspace
specified a dynamical model in the observation space. According to our numerical results,
the estimation subspace is virtually almost locally flat. However, in the parametric space the
effect of intrinsic nonlinearity is exaggerated mainly by the ill-conditioning of the inverse
problem. As we ascertained, a condition number c > 104 indicates that we deal with strong
intrinsic nonlinearity. Nevertheless, a reparametrization can considerably make better the
conditionality and, as we suppose, the choice of the most appropriate parameters in terms of
orbit determination will be a topic of our further investigations.

We also discussed a question about the practical ground of the method of disturbed
observations to stochastically simulate orbital uncertainty under the condition of strong in-
trinsic nonlinearity. From a geometric point of view, the efficiency of the method directly
depends only on the local nonflatness of the estimation subspace that, as our results showed,
is negligible in practice. Therefore, even if the nonlinearity in the parametric space is ex-
tremely strong, the method is quite acceptable to adequately describe the orbital uncertainty.

Strong nonlinearity typically occurs when determining the orbit of a recently discovered
celestial body from a small sample of observations over a very short observed orbital arc.
Lots of new space objects are discovered now and undoubtedly the method of disturbed
observations could become a reliable tool for researching their orbital uncertainties.
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