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SPECIAL PERTURBATION THEORY METHODS IN CELESTIAL 
MECHANICS. II. COMPARATIVE ANALYSIS OF NUMERICAL 
EFFICIENCY 

V. A. Avdyushev UDC 521.1 

A comparative analysis of the efficiency of methods in special perturbation theory [1] is performed as applied to 
the numerical simulation of satellite, asteroid, and planetary orbits, and recommendations on their use are given. 

INTRODUCTION 

In the first part of the present work [1] the basic ideas and principles for the construction of methods in special 
perturbation theory are proposed and their application to the solution of problems in celestial mechanics is substantiated. To 
give clear recommendations on using the methods, a comparative analysis of their efficiency as applied to numerical 
simulation of satellite, asteroid, and planetary orbits is performed. 

1. NUMERICAL EXPERIMENT 

The numerical efficiency of methods in special perturbation theory (Table 1) was investigated as applied to the 
solution of problems on the dynamics of satellites, asteroids, and planets (Table 2). Table 1 gives references to earlier 
derived formulas [1]; the column G  presents designations of the corresponding integration variables for the characteristics 
of the numerical efficiency of methods in the figures given below; N  is the number of equations to be integrated. It should 
be noted that in the Encke methods [1] the reference solutions were recalculated after every two turns. In Table 2, T , e , 
and i  are, respectively, the period, eccentricity, and inclination of the orbit under investigation (the inclinations are given 
relative to the equator of the central planet for satellites and relative to the ecliptic for asteroids); J is the coefficient of the 
second zonal harmonic of the planet, and ν  is the coefficient of influence of short-period perturbations [1]. For the 
problems under consideration the following perturbing factors were considered: the effect of nonsphericity of the central 
body (for satellites), J; the attraction by massive bodies (for satellites and planets), ; and the attraction by the Sun (for 
satellites), . Other perturbing factors were not considered in view of their insignificant effect on the efficiency of 
numerical simulation. 

1.1. Objects. The satellite motion is considered for three natural satellites of Jupiter and Mars (Amalthea, Himalia, 
and Phobos) and two artificial Earth satellites (low-flying at an altitude of 300 km and geosynchronous). The dynamics of 
natural satellites is considered on a 100-year interval: approximately so much time has passed from the time of their 
discovery.  

Amalthea and Phobos are close moons, moving near the plane of the planet equator in near-circular orbits. Their 
orbits are strongly perturbed due to the nonsphericity of the central planet. In addition, Jupiter’s moon experiences a strong 
gravitational influence of massive Galilean moons. The orbital periods of the objects are less than one day, and they make 
a rather large number of turns – more than 50 000 – for a 100-year interval. Therefore, their dynamics should be considered 
long-term from the viewpoint of numerical integration. 
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The far moon, Himalia, has a long orbital period and makes only 152 turns for 100 years. The main perturbing 
factor is its attraction by the Sun; at the same time, the integration of the orbit of Himalia is substantially complicated due to 
the short-period perturbations from the Galilean moons (mainly, from Io), retarding the numerical process.  

The low-flying artificial Earth satellite (300 km altitude) is a fast circumterrestrial object. It makes 222 turns for 
only two weeks. This is precisely the interval on which we considered its orbital motion. First, we were interested whether 
the methods under study are appropriate for use on such a short time interval as applied to the integration of a rather smooth 
orbit; second, it makes no sense to consider the motion of low satellites on longer time intervals, since such a satellite is 
often subject to orbital correction for the reduction of its altitude due to the atmosphere drag. We, however, did not consider 
the atmosphere drag because of its insignificant effect on the efficiency of numerical integration.  

The geosynchronous object was of interest to us only as a representative of the most polluted area of the 
circumterrestrial space, being one of numerous fragments of space dust. Its dynamics was simulated on the 40-year time 
interval which was in fact comparable to the era of space exploration (and pollution). 

In the asteroid and planetary problems, the motion of objects was simulated on the interval of 1000 turns. We have 
considered four objects: two asteroids, Phaeton and Ceres, and two planets, Mercury and Jupiter. Phaeton has a highly 
elongated orbit with a complex structure of perturbations. We have taken this object as an example to demonstrate the 
capabilities of regularizing transform. The orbits of Ceres and Jupiter are almost circular. However, their integration is 
complicated by the short-period perturbations from terrestrial planets, in particular from Mercury. In simulating the motion 
of Mercury, the short-period perturbation problem does not arise, and this will also be shown below. 

1.2. The Everhart method. To integrate the equations of motion, we used the Everhart method [2], widely known 
among celestial mechanics experts, that was developed by the author specially for numerical simulation of orbits. The 
Everhart method is a Runge–Kutta–Batcher-type implicit single-step method [3] based on a polynomial approximation of 

TABLE 1. Special Perturbation Theory Methods  

Variables G Reference N Variables G Reference N 
,x x�  ( t ) x (1) 6 , , , ,h′ τx x g  ( s ) sb (8) 11 
,δ δx x�  ( t ) δx (26) 6 , , ,h′ τu u  ( s ) u (9) 10 

, , hx x�  ( t ) st (17) 7 , , ,h′δ δ δ δτu u  ( s ) δu (27) 10 
, , hx x�  ( t ) nz (18) 7 , , tx x�  ( s ) sm (10) 7 
, , hx x�  ( t ) cn (20) 7 , , tx x�  ( GE )  (11) 7 

, , ,h tx x�  ( t ) δt (22) 8 , , ,h τx x�  ( E ) τ (8) 8 
, , lc g  ( t ) ry (23) 7 ,B Bx x�  ( t ) br (34) 6 

TABLE 2. Celestial Objects and Their Orbits 

Object Center T, day e  i , º Interval, turns/year Perturbations 
Satellites 

Amalthea Jupiter 0.499 0.003 0.3 100 73000 J 33.4 10−= ⋅J  
Himalia Jupiter 247.767 0.166 30.2 100 152  41ν =  (Io) 
Phobos Mars 0.319 0.015 1.1 100 114500 J  43.8 10−= ⋅J  
300 km Earth 0.063 0.000 50.0 0.038 222 J 31.5 10−= ⋅J  

GSS Earth 0.997 0.010 10.0 40 14600 J 53.7 10−= ⋅J  
Asteroids and planets 

Phaeton Sun 523.609 0.890 22.2 1433 1000   0.9ν =  (Mercury) 
1 Ceres Sun 1680.907 0.079 10.6 4602 1000   3.9ν =  (Mercury) 
Mercury Sun 87.969 0.205 7.0 240 1000    
Jupiter Sun 4339.289 0.048 1.3 11880 1000   9.4ν =  (Mercury) 
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the solution. With this method, to increase the approximation order, the Gauss–Rado partition is used. Thus, for the kth-
order partition, the method has an order of 2 1k − . We have chosen the method of order 15. 

However, it should be noted that with the integration parameters recommended by the author1 the error of the 
method not always corresponds to the chosen method order.1 For example, we have come up with the fact that when the 
15th-order Everhart method is used to integrate near-circular orbits (in rectangular coordinates), the global integration error 
| |∆x  depending on the step t∆  behaves as 10| | : t∆ ∆x , i.e. as in the method of order 10. Nevertheless, with the 
recommended parameters, the required accuracy of the solution is attained with the least computer time [2]. 

The method involves an algorithm for choosing a variable integration step. The step is chosen so that the value of 
the polynomial term of order k  be not over 10 L−  [2], where the parameter L  is set by the user. In this connection, the step 
choosing algorithm proposed by the author of the method is not optimum since the step can appear much less than its 
admissible value corresponding to the method of order 2 1k −  . 

1.3. Characteristics of the numerical integration efficiency. To estimate the integration accuracy, we varied the 
parameter L  and estimated the global error of the solution with a smaller L  by the solution with a greater L . The 
numerical integration speed was estimated by the number of steps. As a result, for each system of integrated equations we 
obtained relations between integration accuracy and integration speed which were used to analyze the efficiency of methods 
in theory of special perturbations. 

It should be noted that the estimation of the integration speed by the number of integration steps is well 
substantiated. Certainly, the proposed methods complicate the equations of orbital motion, and this, naturally, affects the 
time of calculation of their right sides. Therefore, it seams that each integration step should be differently labor-consuming 
for different systems. Nevertheless, it should be remembered that in the modern models the most time-consuming the 
calculation of the perturbing function P , which is invariably present in all systems considered by us, and all artefacts 
appearing in the equations after transformations merely fade on the background of the conglomerate P . Therefore, to 
estimate the integration speed in our analysis of the method efficiency it suffices to know only the number of references to 
P  or the number of steps proportional to P  that have been passed throughout the integration process.  

Besides, this characteristic of integration speed is remarkable for its independence of either the optimization of the 
numerical model or the capabilities of the computer processor. Therefore, its use eliminates the factors that affect the speed 
of numerical integration, but, at the same time, have no relation to our methods. 

2. NUMERICAL RESULTS. SATELLITE PROBLEMS 

The accuracy-speed characteristics are given in Figs. 1–11. For the estimation of the significance of integration 
errors, the dashed lines indicate two levels: one corresponds to the semimajor axis of the orbit (a) and the other to an about 
one-second angular error relative to the terrestrial observer (1" ). 

The results obtained for the satellite problems suggest that the methods of special perturbation theory are most 
efficient and can be recommended for use only for the long-term numerical simulation of satellite orbits with a smooth 
structure of perturbations (Figs. 1 and 4b). Impressing results are obtained when the KS equations (u, δu) and the Roy 
equations (ry) are used. Thus, using this models makes it possible to increase the integration speed 3–7 times with the 
integration accuracy preserved. Moreover, in the case of Phobos, the Encke method with KS variables (δu) increases the 
highest possible accuracy almost by two orders of magnitude due to the lower effect of round-off errors.  

These equations are highly efficient, first of all, because they possess a stabilizing effect. Even so, the use of the 
stabilized equations (st) is much less efficient. This, perhaps, is due to that these equations contain artificially introduced 

                                                           
1 Since the method is implicit, the solution on a step is found by iterations; the initial approximate values for the 

coefficients of the approximating polynomial on a running step are estimated by the data on the solution for the previous 
step. In view of that these initial approximate values are rather close to the true values of the coefficients, Everhart 
recommends to execute only two iterations per step, though the iterative process sometimes yields rather rough values of the 
coefficients, especially, if the step is rather large. Therefore, the local accuracy appears rather low and does not correspond 
to the order of the method. 
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terms (stabilizing perturbations) whose behavior is associated with integration errors having no relation to the physics of the 
problem. Therefore, the given artefact, although well substantiated from the viewpoint of stabilization as a means for 
Lyapunov instability control, has a side effect that, in the course of time, noticeably distorts the dynamic pattern of the 
problem. 

Using Amalthea as an example (Fig. 2), we have estimated the efficiency of various stabilizing transforms (st, nz, 
cn, tδ) [1]. It turned out that all stabilizing approaches, except for the canonical one (cn), are equally good. The low 
efficiency of the canonical stabilization is accounted for in the first part of the present work [1]. 

Next it has been shown (Fig. 3) that when simulating the motion of a distant satellite (Himalia), all attempts to 
increase the numerical integration efficiency by using the considered methods fail because of the short-period perturbations 
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Fig. 1. Amalthea. 
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Fig. 2. Amalthea (stabilizing transforms). 
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from the Galilean moons [1]. From Fig. 3 it can also be seen that the integration is much more efficient in the absence of 
short-period perturbations (dashed lines), and the characteristics are distributed almost in the same order of significance as 
for the close moons. 

Finally, it should be noted that the efficiency of the methods of special perturbation theory noticeably decreases 
with decreasing time interval (Fig. 5). However, even so, they still remain applicable.  
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Fig. 3. Himalia. 
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Fig. 4. Phobos. 
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3. NUMERICAL RESULTS. ASTEROID AND PLANETARY PROBLEMS 

The quality of the results obtained for the asteroid and planetary problems depends in the main on the magnitude of 
the short-period perturbations resulting, mainly, from the gravitational influence of Mercury. 

For the asteroid Phaeton, the factor of significance of short-period perturbations, ν [1], is less than unity. Therefore, 
the use of the methods of special perturbation theory is well substantiated, and this is confirmed by the characteristics given 
in Fig. 7. In this case, the highest numerical integration efficiency is achieved by using regularizing transforms (u, δu, sb), 
and this is an expected result since Phaeton has a very elongated orbit with eccentricity 0.89e = . 
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Fig. 5. The 300-km artificial satellite. 
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Fig. 6. The geosynchronous artificial satellite. 
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We also investigated the capabilities of smoothing transforms (sm) by the example of Phaeton. The results are 
presented in Fig. 8. Here, the characteristics correspond to the following independent variables: t  is the time; E , ε , v , and 

GE  are the eccentric, the elliptic, the true, and the generalized eccentric anomaly, respectively; l  is an arch of the orbit, and 
( )E τ is the eccentric anomaly (with the integration variable τ ). As can be seen from the figure, to integrate strongly 

eccentric orbits with a complex structure of perturbations, as that of Phaeton, it is appropriate to use smoothing transforms 
where the eccentric anomaly and its analogs act as independent variables, and no other. The increase in efficiency with the 
use of the generalized eccentric anomaly is explained by that the orbital dynamics along this anomaly is smoothed out not 
only for the ellipticity of the orbit, but also for the irregular and rather large perturbations from the major planets.  
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Fig. 7. Phaeton. 
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Fig. 8. Phaeton (smoothing transforms). 
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As practice shows, loss of accuracy of a numerical solution is related in the main to great errors in the time variable 
due to its nonuniform behavior along an anomaly. Figure 8 shows that introducing a time element τ  which behaves linearly 
in the nonperturbed case allows one to make the numerical integration much more efficient. 

For Ceres and Jupiter, the coefficient ν  is high enough; therefore, the use of the methods considered is inefficient 
(Figs. 9 and 11). Moreover, the methods that are used to advantage in the case of Phaeton (KS and SB regularization) (u, 
δu, sb) even reduce the efficiency of the numerical integration, for example, for Jupiter. At the same time, it should be noted 
that in solving the planetary problem the transformation to a barycentric coordinate system (br) can substantially weaken 
the influence of the short-period perturbations from Mercury and thereby increase the integration accuracy by several orders 
of magnitude (Fig. 11), whereas for the asteroid problem the results are not improved qualitatively.  

1 ' ' 

b r 

10
-6 

10
-10

10
-8 

10
-4 

10
5

10
-2 

10
4 

Number of steps NS

Ac
cu

ra
cy

 |∆
x|

, a
.u

. 

 

Fig. 9. Ceres. 
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Fig. 10. Mercury. 
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In the case of Mercury, the results show (Fig. 10) that for a numerical investigation of its dynamics the equations in 
KS variables (u, δu) are very well applicable. Thus, the numerical integration speed can be increased about seven times with 
the accuracy preserved high enough. As for Phobos, the Encke method (δu) allows one to raise the highest possible 
accuracy by about two orders of magnitude. The low efficiency of the method of variation of arbitrary constants, which is 
represented by the Roy equations (ry), seams to be due to that the orbit of Mercury precesses rather rapidly. This, in turn, 
leads to rapid variations of the momentum vector c , which, probably, is integrated with insufficient accuracy. 

Finally, as to the Encke method (δx), which has not yet received our comments, the results have shown that it 
turned out least efficient among all methods considered. 

CONCLUSION 

Thus, the methods of special perturbation theory are appropriate for use only in those problems where short-period 
perturbing forces are absent, or, if any, only if 1ν < . In the absence of short-period perturbations, the KS regularization 
(uδ) and the Encke method in KS variables (δu) are highly efficient. Besides, for numerical investigation of the dynamics of 
close satellites the method of variation of variables in Roy’s interpretation (ry) can also be recommended.  
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Fig. 11. Jupiter. 




